1 / 18

The physics case of KLOE-2

The physics case of KLOE-2. Pawe ł Moskal on behalf of the KLOE-2 collaboration. Jagellonian University, Cracow, Poland. HADRON 2007 XII International Conference on Hadron Spectroscopy Laboratori Nazionali di Frascati, 7-13 October 2007.

Télécharger la présentation

The physics case of KLOE-2

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The physics case of KLOE-2 Paweł Moskal on behalf of the KLOE-2 collaboration Jagellonian University, Cracow, Poland HADRON 2007 XII International Conference on Hadron Spectroscopy Laboratori Nazionali di Frascati, 7-13 October 2007

  2. The KLOE-2 Collaboration: R.Beck, B.Borasoy, A.Nikolaev, R.Nissler, M.Unverzagt Helholtz-Institut für Strahlen und Kernphysik, Universität Bonn, Germany G.De Robertis, O.Erriquez, F.Loddo, A.Ranieri Dipartimento Interateneo di Fisica, Universita’ di Bari and Sezione INFN, Bari, Italy E.Czerwinski, P..Moskal, J.Zdebik Institute of Physics, Jagellonian University, Cracow, Poland V.Babkin, V.Golovatyuk, I.Tyapkin Joint Institute for Nuclear Research, Dubna, Russia F.Anulli, D.Babusci, G.Bencivenni, M.Beretta, S.Bertolucci, C.Bloise, F.Bossi, P.Campana, G.Capon, P.Ciambrone, E.Dané, E.De Lucia P.De Simone, D.Domenici, G.Felici, E. Iarocci*, J.Lee Franzini, M.Palutan, V.Patera*, M.Poli Lener, P.Santangelo, B.Sciascia, A. Sciubba* G.Venanzoni, R.Versaci Laboratori Nazionali di Frascati dell’INFN, Frascati, Italy * also Dipartamento di Energetica, Universita’ ”La Sapienza”, Rome, Italy P.Beltrame, A.Dening, W.Kluge, D.Leone Institut für Experimentelle Kernphysik, Universität Karlsruhe, Germany S.A.Bulychjov, V.V.Kulikov, M.A.Martemianov, M.A.Matsyuk Institute of Theoretical and Experimental Physics, Moscow, Russia C.Bini, V.Bocci, G.De Zorzi, A.Di Domenico, P.Franzini, P.Gauzzi, E.Pasqualucci, M.Testa Dipartamento di Fisica, Universita’ ”La Sapienza” and Sezione INFN, Rome, Italy A.D’ Angelo, R.Di Salvo, A.Fantini, R.Messi, D.Moricciani Dipartimento di Fisica, Universita’ ”Tor Vergata” and Sezione INFN, Rome, Italy P.Branchini, F.Ceradini, B.Di Micco, E.Graziani, F.Nguyen, A.Passeri, L.Tortora Dipartimento di Fisica, Universita’ ”Roma Tre” and Sezione INFN, Rome, Italy A.Go National central University, Taiwan L.Kurdadze, D.Mchedlishvili, M.Tabidze* Tbilisi State University, Georgia * High Energy Physics Institute of Tbilisi State University, Georgia H.Calén, K.Fransson, B.Höistad, T.Johansson, A.Kupsc, P.Marciniewski, J.Zlomanczuk Departament of Nuclear and Particle Physics, Uppsala University, Sweden

  3. KLOEK LOng Experiment A flavor of KLOE J. Lee-Franzini and P. Franzini e-Print: hep-ex/0702016 KLOE KLOE-2 New Interaction Region + Inner Tracker γγ γγ 2.5 fb-150 fb-1 KlongKlong/Kshort/η,η΄ √s< 1. GeV√s< 2.4 GeV

  4. KLOE-2 intends to conduct investigations at the frontier of particle and hadron physics searching for the phenomena beyond the applicability of Quantum Mechanics and Standard Model of Particle Physics Since nothing is more pleasurable than to falsify the theory !! I thought… the scientific theories were not the digest of observation, but that they were inventions-conjectures boldly put forward for trial to be eliminated if they clashed with observation … David Hume

  5. Selected examples of investigations planned by the KLOE-2 • Tests of descrete symmetries (CPT, CP, …) • Tests of quantum mechanics using thetime-evolution of the entangled pairs of neutral kaons • Lepton universality Search for possible deviations from SM expectation of(K±e)/(K) to 0.5% precision • Universality of the weak interaction of leptons and quarks • Investigations of the structure of the scalar mesons • Study of the muon anomalous magnetic moment αµ and the evolution of the fine structure constantαem determination of the excitation function for the e+e-→ hadrons

  6. CP violation: direct search   KS30 SM (KS30) = (KL30) |000|2  BR(KS30) ~ 210-9 450 pb-1; 6  events tag by KL interaction in the EmC Background: KS20 + 2 split/accidental clusters in the EmC Nbkg(MC)= 3.13 ± 0.90 BR(KS30)< 1.2 × 107 @ 90% CL (BR < 1.4 × 105 @ 90% CL [SND ’99] BR< 7.4  107 [interference, NA48, ‘04]) KLOE-2 with 50 fb-1 can reduce the upper limitby factor of 100; perhaps observe a signal for a first time?

  7. Test of discrete symmetries withdecays →γ(C)<1.6 x 105 at 90% CL(PLB 591, 49) →(P,CP)<1.3 x 105 at 90% CL(PLB 606, 276) KLOE has published the best limits based on a statistics of ~ 400 pb1: At KLOE-2, these limitscan be improved by factor of 100. Existing new physics models allow BR’s only at the level of ~1012 1015 these will becomethe best limits on C and P symmetries conservation in elementary particle’sdecays(see PDG06)

  8. e+e-φγ-e+e- • -Up to now poorly measured (4 events CMD-2, 16 events CELSIUS-WASA) • BR predicted by ChPT and VMD models (2.63.6 × 10-4) • Plane asymmetry implies CP violation • (D.Gao, Mod.Phys.Lett.A17 (2002) 1583) Minv (-e+e-) KLOE preliminary result based on 622 pb-1 4 tracks events + 1 photon (363 MeV )Kinematic Fitp-e recognition Backgrounds:other h decays (mainly and g with g conversion) charged kaon decays + rp KLOE-2 WASA-at-COSY Talks by C. Bini and R. Versaci

  9. _ (KS,L-e+) (KS,L+e-) AS,L = _ (KS,L-e+) (KS,L+e-) • Test of S=Q (CPT conserv. ampl.) • (BR(KLe) and L from KLOE and S from PDG) (SM expect. O(10-7)) AS  AL  0implies CPT violation (CPLEAR  = 6.110-3) Asymmetry of KS,Lesignals a CP violation KLOE-2 would reduce the uncertainty by a factor of 3.

  10. p p f p t1 t2 p Dt=t1-t2 Kaon interferometry:fKSKLp+p- p+p- Dmfrom here I(Dt) (a.u) Perfect vertex resolution no simultaneous decays (Dt=0) in the same final state due to the destructive quantum interference Dt/tS

  11. Decoherence and CPT in neutral Kaon pairs interference term modified introducing a decoherence parameter . PLB 642(2006)315 CPT violation could also change initial state || < 2.1 10-3 @ 95% C.L: Naively, ІІ~ O(MK2 / MPlank )1/2 ~ 10-3 104 L=2.5 fb-1→ L = 50 fb-1 with L=2.5 fb-1: KLOE-2 0.5 x10-5 σt~ 0.9 τs → σt ~¼τs

  12. nature of the scalar mesons Pseudoscalar multi-plet Vector multi-plet Scalar multi-plet: s(500), k(700), f0(980), a0(980) • Is (600) the lightest scalar meson? • Do , a0(980) and f0(980) belong to the • same qq3P0nonet? • If so, why is the mass spectrum inverted? • qqqq states (Jaffe, Achasov et al., Maiani et al.) • KK molecules (Weinstein-Isgur, Close et al., • Kalashnikova et al.) Providedsandkare there the scalars have an “Inverted Spectrum”

  13. nature of the scalar mesons f0(980), a0(980), (500)through radiative decays in pairs of pseudoscalars φpp,φ,φK0K0 Talks by:C. Bini, S.Fiore, F.Nguyen

  14.  - physics: e+e- → e+e- * *→ e+e- +X  dNX dL  ( → X) = Lint dW dW Lint= 1 fb-1 Future prospects - KLOE2 KLOE-2

  15. Unitarity band • f+(0)=0.961(8) • Leutwyler and Roos • [ZPC25, 91(1984)] • Vud=0.97377(27) • Marciano and Sirlin • [PRL96 032002(2006)] Vus×f+(0) = 0.2187(22) Universality of the weak interaction |Vus| from KLOE plot: F.Mescia courtesy <Vus×f+(0)> KLOE AV. = 0.2160(5)( 0.25% rel.) <Vus×f+(0)> WORLD AV. = 0.2164(4) CKM unitarity within ~ 1 KLOE-2 0.05%

  16. Test of LeptonUniversality R = (K± e±) / (K±± ) Standard Model Prediction: R = (2.472 ±0.001) x 105 NA48/2 Preliminary 05: R = (2.416 ±0.049) x 105 NA48/2 can reach ~ 1% precision with present data First studies have started with present KLOE data set: need to fully exploit calorimeter for e/ separation Efficiency will improve with the inner tracker insertion A reasonable guess, based on present detector, is thatwith 50 fb-1  0.5% precision KLOE-2

  17. Energy Scan Radiative return Hadronic cross section measurement The anomalous muon magnetic moment a = (g - 2)/2 = (116592080 ± 60) 10-11 from E821 at BNL theory : a = aQED + aweak + ahad ahad from measurements of the hadronic cross section via dispersion relation KLOE-2 1%

  18. KLOE-2 intends to conduct investigations at the frontier of particle and hadron physics searching for the phenomena beyond the applicability of Quantum Mechanics and Standard Model of Particle Physics Since nothing is more pleasurable than to falsify the theory !! I thought… the scientific theories were not the digest of observation, but that they were inventions-conjectures boldly put forward for trial to be eliminated if they clashed with observation … David Hume

More Related