1 / 12

Neural Synchronization

Neural Synchronization. Jaeseung Jeong, Ph.D Department of Bio and Brain Engineering, KAIST. What is neural synchronization?. Phase synchronization in chaotic systems.

stormy
Télécharger la présentation

Neural Synchronization

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. NeuralSynchronization Jaeseung Jeong, Ph.D Department of Bio and Brain Engineering, KAIST

  2. What is neural synchronization?

  3. Phase synchronization in chaotic systems • Coupled chaotic oscillators can display phase synchronization even when their amplitudes remain uncorrelated (Rosenblum et al., 1996). Phase synchronization is characterized by a non uniform distribution of the phase difference between two time series. It may be more suitable to track nonstationary and nonlinear dynamics.

  4. What are the key factors for synchrony?

  5. Nonlinear coupling among cortical areas

  6. Measures of nonlinear interdependency • The brain can be conceived as a complex network of coupled and interacting subsystems. Higher brain functions depend upon effective processing and integration of information in this network. This raises the question how functional interactions between different brain areas take place, and how such interactions may be changed in different types of pathology.

  7. Mutual information of the EEG • The MI between measurement xi generated from system X and measurement yj generated from system Y is the amount of information that measurement xi provides about yj. • J Jeong, JC Gore, BS Peterson. Mutual information analysis of the EEG in patients with Alzheimer's disease. Clin Neurophysiol (2001)

  8. Recent MI studies on the EEG • Schlogl A, Neuper C, Pfurtscheller G. Estimating the mutual information of an EEG-based Brain-Computer Interface. Biomed Tech. 2002;47(1-2):3-8.Na et al., EEG in schizophrenic patients: mutual information analysis. Clin Neurophysiol. 2002;113(12):1954-60.Huang L, Yu P, Ju F, Cheng J. Prediction of response to incision using the mutual information of electroencephalograms during anaesthesia. Med Eng Phys. 2003;25(4):321-7.

  9. Phase synchronization • ‘Synchronization of chaos refers to a process, wherein two (or many) systems (either equivalent or nonequivalent) adjust a given property of their motion to a common behavior due to a coupling or to a forcing (periodical or noisy)’ (Boccaletti et al., 2002).

  10. Phase synchronization and interdependence Definition of synchronization: two or many subsystems sharing specific common frequencies Broader notion: two or many subsystems adjust some of their time-varying properties to a common behavior due to coupling or common external forcing Jansen et al., Phase synchronization of the ongoing EEG and auditory EP generation. Clin Neurophysiol. 2003;114(1):79-85. Le Van Quyen et al., Nonlinear interdependencies of EEG signals in human intracranially recorded temporal lobe seizures. Brain Res. (1998)Breakspear and Terry. Detection and description of non-linear interdependence in normal multichannel human EEG data. Clin Neurophysiol (2002)

  11. Generalized Synchronization • Generalized synchronization exists between two interacting systems if the state of the response system Y is a function of the state of the driver system X: Y=F(X). Cross prediction is the extent to which prediction of X is improved by knowledge about Y, which allows the detection of driver and response systems. • The nonlinear interdependence is not a pure measure of coupling but is also affected by the complexity or degrees of freedom of the interacting systems

More Related