1 / 12

ตรีโกณมิติ

ตรีโกณมิติ. ตรีโกณ ความหมายตามพจนานุกรมแปลว่า สามเหลี่ยม ตรีโกณมิติ คือ คณิตศาสตร์แขนงหนึ่งที่ว่า ด้วยการคำนวณ มุมของสามเหลี่ยม. ความเป็นมา.

Télécharger la présentation

ตรีโกณมิติ

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ตรีโกณมิติ ตรีโกณ ความหมายตามพจนานุกรมแปลว่า สามเหลี่ยม ตรีโกณมิติ คือ คณิตศาสตร์แขนงหนึ่งที่ว่า ด้วยการคำนวณ มุมของสามเหลี่ยม

  2. ความเป็นมา เมื่อ 640-546 ปี ก่อนคริสต์ศักราช ทาเรส (thales)คำนวณหาความสูง ของพีรามิด ในประเทศอียิปต์โดยอาศัยเงา วิธีหนึ่งที่ทาเรสใช้คือ คำนวณความสูงของพีรามิดจากความยาวของเงาของพีรามิด ในขณะที่เงาของเขามีความยาวเท่ากับความสูงของเขาเอง อีกวิธีหนึ่งที่ทาเรสใช้คำนวณ ความสูงของพีรามิดคือ การเปรียบเทียบความยาวของเงาของพีรามิดกับความยาวของเงาของไม้(ไม้ที่ทราบความยาว ถ้าสมัยนี้ก็คือไม้เมตรนั่นเอง) โดยอาศัยรูปสามเหลี่ยมคล้าย ซึ่งก็คือ อัตราส่วนตรีโกณมิติที่เรียกว่า แทนเจนต์ (tangent) นั่นเอง

  3. อัตราส่วนตรีโกณมิติ อัตราส่วนตรีโกณมิติ (Trigonometric Ratio) หมายถึง อัตราส่วนของด้านของรูปสามเหลี่ยมมุมฉาก การเรียนในเรื่องนี้ผู้เรียนจำเป็นต้อง ใช้ความรู้เดิมเรื่องสามเหลี่ยมคล้ายเพื่อเป็นพื้นฐานในการทำความเข้าใจ การเรียนวิชาตรีโกณมิติให้ได้ดีนั้นต้องจำนิยามของตรีโกณมิติให้ได้ ระดับมัธยมต้นใช้นิยามสามเหลี่ยมมุมฉาก ซึ่งอัตราส่วนตรีโกณมิติ ก็คือ อัตราส่วนของความยาวด้านสองด้านของสามเหลี่ยมมุมฉากซึ่งจะมีชื่อเรียกดังนี้

  4. B c a C b A จากรูป ABC เป็นรูปสามเหลี่ยมมุมฉาก โดยมี AĈB = 90 องศา ถ้าเราพิจารณาที่มุม A 1. ด้าน AB เรียกว่า ด้านตรงข้ามมุมฉาก 2. ด้าน BC เรียกว่า ด้านตรงข้ามมุม A 3. ด้าน AC เรียกว่า ด้านประชิดมุม A

  5. "Sine A" ไซน์ของมุม A หรือเขียนย่อว่า sin A หาได้จากอัตราส่วนของความยาวด้านตรงข้ามมุม A ต่อความยาวด้านตรงข้ามมุมฉาก "Cos A" โคไซน์ของมุม A หรือเขียนย่อว่า cos A หาได้จากอัตราส่วนของความยาวด้านประชิดมุม A ต่อความยาวด้านตรงข้ามมุมฉาก "Tangent A" แทนเจนต์ของมุม A หรือเขียนย่อว่า tan A หาได้จากอัตราส่วนของความยาวด้านตรงข้ามมุม A ต่อความยาวด้านประชิดมุม A

  6. ส่วนฟังก์ชัน cosec, sec และ cot นั้น ก็ใช้นิยามเข้าช่วย ซึ่งเป็นส่วนกลับของ sin, cos และ tan ตามลำดับ จึงต้องจำฟังก์ชัน sin, cos, tan ก็จะได้ในส่วนของ cosec, sec และ cot ขึ้นมาเองโดยอัตโนมัติ "Cotangent A" โคแทนเจนต์ของมุม A หรือเขียนย่อว่า cot A หาได้จากอัตราส่วนของความยาวด้านด้านประชิดมุม A ต่อความยาวด้านตรงข้ามมุม A "Secant A" ซีแคนต์ของมุม A หรือเขียนย่อว่า sec A หาได้จากอัตราส่วนของความยาวด้านตรงข้ามมุมฉาก ต่อ ความยาวด้านประชิดมุม A "Cosecant A" โคซีแคนต์ของมุม A หรือเขียนย่อว่า cosec A หาได้จากอัตราส่วนของความยาวด้านตรงข้ามมุมฉาก ต่อ ความยาวด้านตรงข้ามมุม A

  7. ฟังก์ชันตรีโกณมิติ ฟังก์ชันตรีโกณมิติ (อังกฤษ: Trigonometric function) คือ ฟังก์ชันของมุม ซึ่งมีความสำคัญในการศึกษารูปสามเหลี่ยมและปรากฏการณ์ในลักษณะเป็นคาบ ฟังก์ชันอาจนิยามด้วยอัตราส่วนของด้าน 2 ด้านของรูปสามเหลี่ยมมุมฉาก หรืออัตราส่วนของพิกัดของจุดบนวงกลมหนึ่งหน่วย หรือนิยามในรูปทั่วไปเช่น อนุกรมอนันต์ หรือสมการเชิงอนุพันธ์ รูปสามเหลี่ยมที่นำมาใช้จะอยู่ในระนาบแบบยุคลิด ดังนั้น ผลรวมของมุมทุกมุมจึงเท่ากับ 180°เสมอ

  8. เอกลักษณ์ตรีโกณมิติ นิยาม เอกลักษณ์ตรีโกณมิติ คือ การเท่ากันของอัตราส่วนตรีโกณมิติที่ต่างกันและเป็นจริงสำหรับทุกๆค่าขององศา เมื่อกำหนด A เป็นมุมแหลม 1. sin A x cosec A = 1 2. cos A x sec A = 1 3. tan A x cot A = 1 4. cos A x tan A = sin A 5. cot A x sin A = cos A 6. sin2A + cos2A = 1 7. sec2A - tan2A = 1 8. cosec2A - cot2A = 1

  9. ตัวอย่างที่ 1 จงหาค่า cos 75๐

  10. ตัวอย่างที่ 2 จงหาค่า sin 67๐                  sin 67๐         =   sin (37๐ + 30๐)                                     =   sin 37๐ . cos 30๐ + cos 37๐  . sin 30๐ = =

  11. ตัวอย่างที่ 3 จงหาค่า = = = = = 2

More Related