1 / 56

Prof.Dr. Ümmühan İşoğlu-Alkaç İ.Ü. İstanbul Tıp Fakültesi Fizyoloji Anabilim Dalı

Microcirculation and Lymphatic System. Prof.Dr. Ümmühan İşoğlu-Alkaç İ.Ü. İstanbul Tıp Fakültesi Fizyoloji Anabilim Dalı alkac@istanbul.edu.tr YU Medical Faculty, 09.10.2013. Microcirculation and the Lymphatic System. Structure of the microcirculation and capillary system.

Télécharger la présentation

Prof.Dr. Ümmühan İşoğlu-Alkaç İ.Ü. İstanbul Tıp Fakültesi Fizyoloji Anabilim Dalı

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Microcirculation and Lymphatic System Prof.Dr. Ümmühan İşoğlu-Alkaç İ.Ü. İstanbul Tıp Fakültesi Fizyoloji Anabilim Dalı alkac@istanbul.edu.tr YU Medical Faculty, 09.10.2013

  2. Microcirculation and the Lymphatic System

  3. Structure of the microcirculation and capillary system The arterioles are highly muscular … Metarterioles (the terminal arterioles) do not have a continuous muscular coat, but smooth muscle fibers encircle the vessel at intermittent points Precapillary sphincter between the metarteriole and capillary The venules are larger than the arterioles and have much weaker muscular coat Local conditions of the tissues and regulation of blood flow

  4. Structure of the microcirculation and capillary system

  5. Structure of the capillary wall Total thickness of the capillary wall is only about 0.5 µm, 500-900 m2 , 4-9 µm, funct.cell:20-30 µm

  6. Special types of pores and certain organs • In the brain, junctions between the capillary endothelial cells are mainly “tight” junctions that allow only extremely small molecules such as water, O2, CO2 for passage • In the liver, the opposite is true. • The pores of the gastrointestinal capillary membranes are midway between those of the muscle and liver • In the glomerular structure of the kidney, there are small oval windows on the capillary walls called “fenestrae” (fenestrated capillaries)

  7. Liver, Bone Marrow, Spleen

  8. Flow of Blood in the Capillaries- Vasomotion Blood usually does not flow continuously through the capillaries It flows intermittently every few seconds or minutes This phenomenon is called “vasomotion” The most important factor to affect the degree of openning and closing of the metarterioles and precapillary sphincters is the oxygen concentration Average function of the capillary system…

  9. Exchange of water, nutrients and other substances between the blood and interstitial fluid Diffusion through the capillary membrane: the most important means for transport of substances between the plasma and interstitial fluid Lipid soluble substances can diffuse directly through the cell membranes of the capillary endothelium (e.g. O2 and CO2) Water-soluble, non-lipid-soluble substances diffuse only through intercellular pores in the capillary membrane (e.g. water molecules, Na ions, Cl ions and glucose) Effect of concentration difference on net rate of diffusion through the capillary membrane

  10. Exchange of water, nutrients and other substances between the blood and interstitial fluid

  11. Effect of molecular size on passage through the pores

  12. The Interstitium and Interstitial Fluid Interstitium and interstitial fluid (12 lt, ~1/6¨, -2 --- -3 mmHg) Two major types of structures Collagen fiber bundles Proteoglycan filaments Proteoglycan filaments: 98% hyaluronic acid and 2% protein “Gel” in the interstitium: because of large number of proteoglycan filaments, it is difficult for fluid to flow easily through tissue gel Interstitial fluid is the same as plasma except it contains low concentrations of proteins Formation of edema… (%1 free fluid)

  13. The Interstitium and Interstitial Fluid

  14. Fluid filtration, hydrostatic and oncotic pressures The hydrostatic pressure in the capillary tends to force fluid and its dissolved substances through the capillary pores into the interstitial spaces Conversely, colloid osmotic pressure (oncotic pressure) of the plasma proteins tends to cause fluid movement by osmosis from the interstitial spaces into the blood This oncotic pressure prevents significant loss of fluid volume from blood Lymphatic system and recovery of proteins from the interstitial space

  15. Fluid filtration, hydrostatic and oncotic pressures Starling Powers: The hydrostatic pressure Kolloid osmotic pressure (oncotic pressure)

  16. Four primary hydrostatic and colloid osmotic forces determine fluid movement through the capillary membrane Capillary hydrostatic pressure (Pc) Interstitial fluid (hydrostatic) pressure (Pif) The capillary plasma colloid osmotic (oncotic) pressure Interstitial fluid colloid osmotic (oncotic) pressure

  17. Net filtration pressure The net filtration pressure is positive, under normal conditions

  18. Capillary and Interstitial Hydrostatic Pressures Capillary hydrostatic pressure: Arterial end of capillary: 30 mmHg Venous end of capillary: 10 mmHg Interstitial fluid (hydrostatic) pressure: The true interstitial fluid pressure is negative, averaging about -3 mmHg Pumping by the lymphatic system is the basic cause of negative interstitial pressure

  19. Plasma Colloid Osmotic (Oncotic) Pressure Proteins in the plasma cause oncotic pressure Non-permeability of plasma proteins Normal values: plasma oncotic pressure of normal human plasma is about 28 mmHg 19 mmHg of this is caused by molecular effects of dissolved proteins and 9 mmHg by Donnan effect (i.e. Osmotic pressure caused by Na, K and other cations held in the plasma by proteins) About 80% of plasma oncotic pressure results from Albumin, 20% from globulin and almost none from fibrinogen

  20. Interstitial Fluid Colloid Osmotic (Oncotic) Pressure Although size of the usual capillary pore is smaller than the molecular sizes of the plasma proteins, this is not true for all pores. Therefore, small amounts of proteins leak into the interstitial space Presence of these proteins cause interstitial fluid oncotic pressure (8 mmHg)

  21. Exchange of Fluid Volume Through the Capillary membrane The average capillary pressure at the arterial ends of the capillaries is 15 to 25 mmHg greater than at the venous ends. Because of this difference, fluid filters out of the capillaries at the arterial end, but it is reabsorbed at the venous end.

  22. Analysis of the forces causing filtration at the arterial end of the capillary

  23. Analysis of reabsorption at the venous end of the capillary

  24. Starling Equlibrium for Capillary Exchange

  25. Net Filtration Outward forces: 28.3 mmHg Inward forces: 28 mmHg This slight excess of filtration is called net filtration: 0.3 mmHg 2 ml / min in the body Abnormal imbalance of forces at the capillary membrane If the mean capillary pressure rises above 17 mmHg, the net force increases. As a result fluid will accumulate in the interstitial space and edema will result. Conversely, if the capillary pressure falls very low, net reabsorption of fluid will occur and blood volume will increase…

  26. arterial end

  27. venous end

  28. Vasodilatator theory According to this theory, greater the rate of metabolism or the less the availability of oxygen or some other nutrients to the tissue, the greater the rate of formation of vasodilatator substances Adenosine, CO2, adenosine phosphate compounds, histamine, K ions and H ions Importance of adenosine in local vasodilatation

  29. Oxygen lack theory for local blood flow control Vasomotion, metarteriole and precapillary sphincter • Smooth muscle requires oxygen to remain contracted

  30. Lymphatic System

  31. Consists of two semi-independent parts A meandering network of lymphatic vessels Lymphoid tissues and organs scattered throughout the body Returns interstitial fluid and leaked plasma proteins back to the blood Lymph – interstitial fluid once it has entered lymphatic vessels Lymphatic System: Overview

  32. Lymphatic System Exceptions for the lymphatic system: superficial portions of the skin, central nervous system, endomyosium of muscles and bones. But even these tissues have prelymphatics through which interstitial fluid can flow Lymph vessels from lower parts of the body – Thoracic Duct

  33. Lymphatic System Lymph from the left side of the head, left arm, and parts of the chest also goes into thoracic duct Lymph from right side of the head, right arm, and parts of the thorax enters the right lymph duct which empties into the venous blood at the right side (juncture of jugular vein and right subclavian vein)

  34. Lymphatic System: Overview

  35. Lymphatic Capillaries Similar to blood capillaries, with modifications Remarkably permeable Loosely joined endothelial minivalves Withstand interstitial pressure and remain open The minivalves function as one-way gates that: Allow interstitial fluid to enter lymph capillaries Do not allow lymph to escape from the capillaries

  36. Lymphatic Capillaries * Total quantity of lymph is normally only 2-3 liters/day * This lymph is continually absorbed from the tissues by lymphatic capillaries and returned to the blood circulation

  37. Lymphatic Vessels A one-way system in which lymph flows toward the heart Lymph vessels include: Microscopic, permeable, blind-ended capillaries Lymphatic collecting vessels Trunks and ducts

  38. Lymphatic Capillaries During inflammation, lymph capillaries can absorb: Cell debris Pathogens Cancer cells Cells in the lymph nodes: Cleanse and “examine” this debris Lacteals – specialized lymph capillaries present in intestinal mucosa Absorb digested fat and deliver chyle to the blood

  39. Rate of Lymph Flow Any factor increasing interstitial fluid pressure also increases lymph flow. Such factors include Elevated capillary pressure Decreased plasma colloid osmotic pressure Increased interstitial fluid colloid osmotic pressure Increased permeability of the capillaries Maximum lymph flow rate

  40. Lymphatic Pump Intrinsic intermittent contraction of the lymph vessel walls External factors: Contraction of surrounding skeletal muscles Movement of parts of the body Pulsations of arteries adjacent to the lymphatics Compression of the tissues by objects outside the body The lymphatic pump becomes very active during exercise

  41. Lymph Transport The lymphatic system lacks an organ that acts as a pump Vessels are low-pressure conduits Uses the same methods as veins to propel lymph Pulsations of nearby arteries Contractions of smooth muscle in the walls of the lymphatics www.youtube.com/watch?v=Kh-XdNnTZUo&feature=related

  42. Lymphatic Pump Primary factors that determine the lymph flow: Interstitial fluid pressure Activity of the lymphatic pump

More Related