810 likes | 925 Vues
Prepare for the final exam of Probabilistic Inference with topics like Belief Propagation, Relaxations, and Integer Programming Formulation. Study the slides and practice solving reparameterization constants and minimum cut problems. Understand the intricacies of Linear Programming Relaxation and Dual decomposition for efficient solutions.
E N D
Probabilistic InferenceLecture 5 M. Pawan Kumar pawan.kumar@ecp.fr Slides available online http://cvc.centrale-ponts.fr/personnel/pawan/
What to Expect in the Final Exam • Open Book • Textbooks • Research Papers • Course Slides • No Electronic Devices • Easy Questions – 10 points • Hard Questions – 10 points
Easy Question – BP Compute the reparameterization constants for (a,b) and (c,b) such that the unary potentials of b are equal to its min-marginals. -2 2 6 -6 12 -3 -2 -1 -4 5 -3 -5 9 5 Vb Vc Va
Hard Question – BP Provide an O(h) algorithm to compute the reparameterization constants of BP for an edge whose pairwise potentials are specified by a truncated linear model.
Easy Question – Minimum Cut Provide the graph corresponding to the MAP estimation problem in the following MRF. -2 2 6 -6 12 -3 -2 -1 -4 5 -3 -5 9 5 Vb Vc Va
Hard Question – Minimum Cut Show that the expansion algorithm provides a bound of 2M for the truncated linear metric, where M is the value of the truncation.
Easy Question – Relaxations Using an example, show that the LP-S relaxation is not tight for a frustrated cycle (cycle with an odd number of supermodular pairwise potentials).
Hard Question – Relaxations Prove or disprove that the LP-S and SOCP-MS relaxations are invariant to reparameterization.
Integer Programming Formulation min ∑a ∑i a;i ya;i + ∑(a,b) ∑ik ab;ik yab;ik ya;i {0,1} ∑i ya;i = 1 yab;ik =ya;i yb;k
Integer Programming Formulation min Ty ya;i {0,1} ∑i ya;i = 1 yab;ik =ya;i yb;k = [ … a;i …. ; … ab;ik ….] y = [ … ya;i …. ; … yab;ik ….]
Linear Programming Relaxation min Ty ya;i {0,1} ∑i ya;i = 1 yab;ik =ya;i yb;k Two reasons why we can’t solve this
Linear Programming Relaxation min Ty ya;i [0,1] ∑i ya;i = 1 yab;ik =ya;i yb;k One reason why we can’t solve this
Linear Programming Relaxation min Ty ya;i [0,1] ∑i ya;i = 1 ∑k yab;ik =∑kya;i yb;k One reason why we can’t solve this
Linear Programming Relaxation min Ty ya;i [0,1] ∑i ya;i = 1 ∑k yab;ik =ya;i∑k yb;k = 1 One reason why we can’t solve this
Linear Programming Relaxation min Ty ya;i [0,1] ∑i ya;i = 1 ∑k yab;ik =ya;i One reason why we can’t solve this
Linear Programming Relaxation min Ty ya;i [0,1] ∑i ya;i = 1 ∑k yab;ik =ya;i No reason why we can’t solve this * *memory requirements, time complexity
Dual of the LP Relaxation Wainwright et al., 2001 1 Va Vb Vc Va Vb Vc 2 Vd Ve Vf Vd Ve Vf 3 Vg Vh Vi Vg Vh Vi 4 5 6 Va Vb Vc Vd Ve Vf Vg Vh Vi i =
Dual of the LP Relaxation Wainwright et al., 2001 q*(1) Va Vb Vc Va Vb Vc Vd Ve Vf q*(2) Vd Ve Vf Vg Vh Vi q*(3) Vg Vh Vi q*(4) q*(5) q*(6) Va Vb Vc Dual of LP Vd Ve Vf max q*(i) Vg Vh Vi i =
Dual of the LP Relaxation Wainwright et al., 2001 q*(1) Va Vb Vc Va Vb Vc Vd Ve Vf q*(2) Vd Ve Vf Vg Vh Vi q*(3) Vg Vh Vi q*(4) q*(5) q*(6) Va Vb Vc Dual of LP Vd Ve Vf max q*(i) Vg Vh Vi i
Dual of the LP Relaxation Wainwright et al., 2001 max q*(i) i I can easily compute q*(i) I can easily maintain reparam constraint So can I easily solve the dual?
Outline • TRW Message Passing • Dual Decomposition
Things to Remember • BP is exact for trees • Every iteration provides a reparameterization • Forward-pass computes min-marginals of root
TRW Message Passing Kolmogorov, 2006 4 5 6 1 Va Vb Vc Vb Vc Va 2 Vd Ve Vf Ve Vf Vd 3 Vg Vh Vi Vh Vi Vg Va Pick a variable q*(i) i
TRW Message Passing Kolmogorov, 2006 1c;1 1b;1 1a;1 4a;1 4d;1 4g;1 1c;0 1b;0 1a;0 4a;0 4d;0 4g;0 Vc Vb Va Va Vd Vg q*(i) i
TRW Message Passing Kolmogorov, 2006 1c;1 1b;1 1a;1 4a;1 4d;1 4g;1 1c;0 1b;0 1a;0 4a;0 4d;0 4g;0 Vc Vb Va Va Vd Vg Reparameterize to obtain min-marginals of Va q*(1) + q*(4) + K 1 +4 + rest
TRW Message Passing Kolmogorov, 2006 ’1c;1 ’1b;1 ’1a;1 ’4a;1 ’4d;1 ’4g;1 ’1c;0 ’1b;0 ’1a;0 ’4a;0 ’4d;0 ’4g;0 Vc Vb Va Va Vd Vg One pass of Belief Propagation q*(’1) + q*(’4) + K ’1 +’4 + rest
TRW Message Passing Kolmogorov, 2006 ’1c;1 ’1b;1 ’1a;1 ’4a;1 ’4d;1 ’4g;1 ’1c;0 ’1b;0 ’1a;0 ’4a;0 ’4d;0 ’4g;0 Vc Vb Va Va Vd Vg Remain the same q*(’1) + q*(’4) + K ’1 +’4 + rest
TRW Message Passing Kolmogorov, 2006 ’1c;1 ’1b;1 ’1a;1 ’4a;1 ’4d;1 ’4g;1 ’1c;0 ’1b;0 ’1a;0 ’4a;0 ’4d;0 ’4g;0 Vc Vb Va Va Vd Vg min{’1a;0,’1a;1} + min{’4a;0,’4a;1} + K ’1 +’4 + rest
TRW Message Passing Kolmogorov, 2006 ’1c;1 ’1b;1 ’1a;1 ’4a;1 ’4d;1 ’4g;1 ’1c;0 ’1b;0 ’1a;0 ’4a;0 ’4d;0 ’4g;0 Vc Vb Va Va Vd Vg Compute average of min-marginals of Va min{’1a;0,’1a;1} + min{’4a;0,’4a;1} + K ’1 +’4 + rest
TRW Message Passing Kolmogorov, 2006 ’1c;1 ’1b;1 ’1a;1 ’4a;1 ’4d;1 ’4g;1 ’1c;0 ’1b;0 ’1a;0 ’4a;0 ’4d;0 ’4g;0 Vc Vb Va Va Vd Vg ’’a;0 = ’1a;0+ ’4a;0 ’’a;1 = ’1a;1+ ’4a;1 2 2 min{’1a;0,’1a;1} + min{’4a;0,’4a;1} + K ’1 +’4 + rest
TRW Message Passing Kolmogorov, 2006 ’1c;1 ’1b;1 ’’a;1 ’’a;1 ’4d;1 ’4g;1 ’1c;0 ’1b;0 ’’a;0 ’’a;0 ’4d;0 ’4g;0 Vc Vb Va Va Vd Vg ’’a;0 = ’1a;0+ ’4a;0 ’’a;1 = ’1a;1+ ’4a;1 2 2 min{’1a;0,’1a;1} + min{’4a;0,’4a;1} + K ’’1 +’’4 + rest
TRW Message Passing Kolmogorov, 2006 ’1c;1 ’1b;1 ’’a;1 ’’a;1 ’4d;1 ’4g;1 ’1c;0 ’1b;0 ’’a;0 ’’a;0 ’4d;0 ’4g;0 Vc Vb Va Va Vd Vg ’’a;0 = ’1a;0+ ’4a;0 ’’a;1 = ’1a;1+ ’4a;1 2 2 min{’1a;0,’1a;1} + min{’4a;0,’4a;1} + K ’’1 +’’4 + rest
TRW Message Passing Kolmogorov, 2006 ’1c;1 ’1b;1 ’’a;1 ’’a;1 ’4d;1 ’4g;1 ’1c;0 ’1b;0 ’’a;0 ’’a;0 ’4d;0 ’4g;0 Vc Vb Va Va Vd Vg ’’a;0 = ’1a;0+ ’4a;0 ’’a;1 = ’1a;1+ ’4a;1 2 2 2 min{’’a;0, ’’a;1} + K ’’1 +’’4 + rest
TRW Message Passing Kolmogorov, 2006 ’1c;1 ’1b;1 ’’a;1 ’’a;1 ’4d;1 ’4g;1 ’1c;0 ’1b;0 ’’a;0 ’’a;0 ’4d;0 ’4g;0 Vc Vb Va Va Vd Vg ≥ min {p1+p2, q1+q2} min {p1, q1} + min {p2, q2} 2 min{’’a;0, ’’a;1} + K ’’1 +’’4 + rest
TRW Message Passing Kolmogorov, 2006 ’1c;1 ’1b;1 ’’a;1 ’’a;1 ’4d;1 ’4g;1 ’1c;0 ’1b;0 ’’a;0 ’’a;0 ’4d;0 ’4g;0 Vc Vb Va Va Vd Vg Objective function increases or remains constant 2 min{’’a;0, ’’a;1} + K ’’1 +’’4 + rest
TRW Message Passing Initialize i. Take care of reparam constraint Choose random variable Va Compute min-marginals of Va for all trees Node-average the min-marginals Can also do edge-averaging REPEAT Kolmogorov, 2006
Example 1 2 0 4 4 0 6 6 1 6 l1 1 2 4 1 3 1 l0 5 0 2 1 3 0 2 3 4 Vb Vc Va Va Vb Vc 5 6 7 Pick variable Va. Reparameterize.
Example 1 5 -3 4 4 0 6 6 -3 10 l1 2 1 -1 3 -3 -2 l0 7 -2 2 1 3 -3 2 3 7 Vb Vc Va Va Vb Vc 5 6 7 Average the min-marginals of Va
Example 1 7.5 -3 4 4 0 6 6 -3 7.5 l1 2 1 -1 3 -3 -2 l0 7 -2 2 1 3 -3 2 3 7 Vb Vc Va Va Vb Vc 7 6 7 Pick variable Vb. Reparameterize.
Example 1 7.5 -7.5 8.5 9 -5 6 6 -3 7.5 l1 1 -5.5 -3 -1 -3 -7 l0 7 -7 6 -3 3 -3 7 3 7 Vb Vc Va Va Vb Vc 7 6 7 Average the min-marginals of Vb
Example 1 7.5 -7.5 8.75 8.75 -5 6 6 -3 7.5 l1 1 -5.5 -3 -1 -3 -7 l0 7 -7 6.5 -3 3 -3 6.5 3 7 Vb Vc Va Va Vb Vc 6.5 6.5 7 Value of dual does not increase
Example 1 7.5 -7.5 8.75 8.75 -5 6 6 -3 7.5 l1 1 -5.5 -3 -1 -3 -7 l0 7 -7 6.5 -3 3 -3 6.5 3 7 Vb Vc Va Va Vb Vc 6.5 6.5 7 Maybe it will increase for Vc NO
Example 1 7.5 -7.5 8.75 8.75 -5 6 6 -3 7.5 l1 1 -5.5 -3 -1 -3 -7 l0 7 -7 6.5 -3 3 -3 6.5 3 7 Vb Vc Va Va Vb Vc f1(a) = 0 f1(b) = 0 f2(b) = 0 f2(c) = 0 f3(c) = 0 f3(a) = 0 Strong Tree Agreement Exact MAP Estimate
Example 2 2 0 2 0 1 0 0 0 4 l1 1 0 1 1 0 1 l0 5 0 0 1 3 0 2 0 8 Vb Vc Va Va Vb Vc 4 0 4 Pick variable Va. Reparameterize.
Example 2 4 -2 2 0 1 0 0 0 4 l1 0 -1 0 1 -1 0 l0 7 -2 0 1 3 -1 2 0 9 Vb Vc Va Va Vb Vc 4 0 4 Average the min-marginals of Va
Example 2 4 -2 2 0 1 0 0 0 4 l1 0 -1 0 1 -1 0 l0 8 -2 0 1 3 -1 2 0 8 Vb Vc Va Va Vb Vc 4 0 4 Value of dual does not increase
Example 2 4 -2 2 0 1 0 0 0 4 l1 0 -1 0 1 -1 0 l0 8 -2 0 1 3 -1 2 0 8 Vb Vc Va Va Vb Vc 4 0 4 Maybe it will decrease for Vb or Vc NO
Example 2 4 -2 2 0 1 0 0 0 4 l1 0 -1 0 1 -1 0 l0 8 -2 0 1 3 -1 2 0 8 Vb Vc Va Va Vb Vc f1(a) = 1 f1(b) = 1 f2(b) = 1 f2(c) = 0 f3(c) = 1 f3(a) = 1 f2(b) = 0 f2(c) = 1 Weak Tree Agreement Not Exact MAP Estimate
Example 2 4 -2 2 0 1 0 0 0 4 l1 0 -1 0 1 -1 0 l0 8 -2 0 1 3 -1 2 0 8 Vb Vc Va Va Vb Vc f1(a) = 1 f1(b) = 1 f2(b) = 1 f2(c) = 0 f3(c) = 1 f3(a) = 1 f2(b) = 0 f2(c) = 1 Weak Tree Agreement Convergence point of TRW