170 likes | 312 Vues
This document explores the relationship between data mining and visualization, emphasizing how visualization aids in extracting patterns and knowledge from complex datasets. It discusses challenges such as the curse of dimensionality and the importance of dimensionality reduction techniques like feature selection and PCA. It also showcases the use of optimization strategies in visualizing data, whether through supervised or unsupervised methods. Real-world applications, including global behavior modeling for grid autonomic management, highlight the practical implications of these concepts.
E N D
Data Mining VS Visualization Santiago González Tortosa <sgonzalez@fi.upm.es>
Contents • Data Mining VS Visualization • Visualizeto DM • DM toVisualize (to DM) • Real worldwork: • Global BehaviorModeling: A New approachtoGridautonomicmanagement
Data Mining VS Visualization • Data Mining • Knowledgediscovery and extration • Notalwaysiseasytoseepatterns, distributions, etc. • Visualization • Represents data (2D, 3D, Virtual Reality,…) • Helpstoextractpatterns • Notalwaysiseasytorepresent data in 2 or 3 dimensions
Visualizeto DM • Visualizationhelpustoextractanypattern in the data
Visualizeto DM • Visualizationhelpustoextractanypattern in the data
DM toVisualize • Data contains N (> 3) features • Curse of Dimensionality • Wewanttovisualizeall data • DimensionalityReduction • Reduce number of features • Transform and create new features
DM toVisualize • DimensionalityReduction • L.J.P. van der Maaten, E.O. Postma, and H.J. van den Herik. DimensionalityReduction: A ComparativeReview. TilburgUniversityTechnicalReport, TiCC-TR 2009-005, 2009 • Convextechniques: optimizeanobjective function that does not contain any local optima • Nonconvextechniques: optimizeobjective functions that do contain local optima
DM toVisualize • Optimizationtechniques (hillclimbing, evolutive, etc.)
DM toVisualize • Optimizationtechniques • Oneobjective • Oneobjectivewithconstraints (Semi-Supervisedand labeling) • Multiobjective
DM toVisualize • Example: Optimize axis
DM toVisualize • DimensionalityReduction in 2 phases: • FSS: FeatureSubsetSelection (wrapper, needed CLASS!) • Transformation and creation of new features (f.e. PCA)
DM toVisualize • Example of DimensionalityReduction in 2 phases • Userexpertinteracts
DM toVisualize • DM toVisualize….to DM!! • The idea istoobtain new knowledgeorpatternsviewingthe data. • Supervisedinfo: data withthesameclass are represented in thesamearea (KNN). • Unsupervisedinfo: data isagrouped
DM toVisualize • Examplethatsome data isagrouped
DM toVisualize • Visualization • 2D and 3D visualization • Virtual Reality • Inmersion • Interaction • Imagination • AugmentedReality
Real worldwork Global BehaviorModeling: A New approachtoGridautonomicmanagement Jesus Montes <jmontes@fi.upm.es>
Data Mining VS Visualization Santiago González Tortosa <sgonzalez@fi.upm.es>