Florian Schroff, Antonio Criminisi & Andrew Zisserman ICCV 2007 - PowerPoint PPT Presentation

florian schroff antonio criminisi andrew zisserman iccv 2007 n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Florian Schroff, Antonio Criminisi & Andrew Zisserman ICCV 2007 PowerPoint Presentation
Download Presentation
Florian Schroff, Antonio Criminisi & Andrew Zisserman ICCV 2007

play fullscreen
1 / 9
Florian Schroff, Antonio Criminisi & Andrew Zisserman ICCV 2007
101 Views
Download Presentation
tamika
Download Presentation

Florian Schroff, Antonio Criminisi & Andrew Zisserman ICCV 2007

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Florian Schroff, Antonio Criminisi & Andrew ZissermanICCV 2007 • Harvesting Image Databases from the Web

  2. Outline Goal: retrieve class specific images from the web • images are ranked using a multi-modal approach: • text & meta data from the web pages • visual features Algorithm enter object keyword (e.g. penguin) retrieve set of images using Google web search filter to remove drawings & abstract images rank images using meta-data from web pages train SVM on visual features using (4) as noisy training data final ranking using trained SVM

  3. Example: Penguin • Enter “penguin” • Retrieve images from web pages returned by Google web search on penguin • 522 in-class, 1771 non-class • 3. Remove drawings & abstract images • 391 in-class, 784 non-class

  4. Example: Penguin continued 4. rank images using naïve Bayes metadata ranker 5. Train SVM on visual features using ranked images as noisy training data 6. Final re-ranking using trained SVM

  5. Details of Abstract Filter

  6. Details of Meta-data Re-rank Filter

  7. Example: Penguin continued

  8. More examples classes – cars, elephants

  9. More examples classes – watches, zebras