1 / 17

The HRIBF

Virtual HRIBF Tour 2. Study of 7 Be(p,  ) 8 B at the HRIBF 3. A novel approach to (p,  ) reactions Jeff Blackmon Physics Division, Oak Ridge National Lab. The HRIBF. SNO. 1998. SNO  NC = (5.21  0.27 stat  0.38 sys ) x 10 6 /(cm 2 s).

tavita
Télécharger la présentation

The HRIBF

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Virtual HRIBF Tour2. Study of 7Be(p,)8B at the HRIBF3. A novel approach to (p,) reactionsJeff BlackmonPhysics Division, Oak Ridge National Lab

  2. The HRIBF

  3. SNO 1998 SNO NC = (5.21  0.27stat 0.38sys) x 106 /(cm2s) SNO & SuperK measure only neutrinos from the decay of 8B 2. Flux measurements determine neutrino properties n 7Be(p,g)8B A accurate value for the predicted 8B neutrino flux is need for comparison to the current generation of measurements SuperK CC = (2.39  0.03stat 0.06sys) x 106 /(cm2s) Creighton Nickel Mine 1 kt heavy water nx + d  p + n SSM = 5.7 x 106 /(cm2s)  ~12-16%

  4. Trache (Glauber 2004) Schumann (CD 2003) Davids & Typel (CD 2003) Azhari (ANC 2001) Status of 7Be(p,g)8B Junghans et al. Evaluated S17 (eV b) Junghans PRC 68 (2003) 065803. 21.40.50.6 Davids & Typel PRC 68 (2003) 045802. 18.60.41.1 Cyburt et al., PRC 70 (2004) 045801. 19.3  21.4 with ~ 6-7%  • Precision has been significantly improved. • Some questions remain.

  5. New Coulomb dissociation result Schumann et al., PRC 73 (2006) 015806. Small E2 Change in S17(E) 20.60.81.2 eV b

  6. collimated Si detectors diagnostics 7Be H2 5+ p(8B) = p(7Be)  0.4% q(8B) < 0.24 v(7Be) = 1.14 v(8B) ionization chamber 8B s = H I7 e cm2 1H(7Be,8B) at the HRIBFala NABONA 4+ Transfer reactions Fusion evaporation Scattering reactions Energy loss & stopping power 12C(p,)13N 24Mg(p,g)25Al • Accurate statistics • Different, well-characterized systematic uncertainties

  7. Li metal 12 MeV protons ~ 10 mA 7Li(p,n)7Be 0.2 Ci 7Be beam production 2x1077Be/s 0.12 Ci

  8. Windowless H2 gas target Si detector  DE=3966 keV 19F(p,ag)16O e = (572) 10-15 eVcm2 n = DE /e n5.5 Torr = (6.95 ± 0.24)·1018 /cm2

  9. Stable capture reactions broad resonance narrow resonance scan qlab< 0.63 accepted by gas target apertures wg = 520  35 eV NACRE: 532  41 eV TRIUMF: 576  41 eV 24Mg(p,g)25Al shape very sensitive to losses < few %

  10. First 7Be(p,)8B run at the HRIBF Mixed 7Be & 7Li beam D2 gas 63.1 h<I> = 1.52x1077Be/sE(7Be) = 11.96  0.02 MeV Mixed 7Be & 7Li beam H2 gas Pure 7Li beam H2 gas 22 counts

  11. Junghans et al. 0.91 0.03 mb Results from first run New beam sampler R.P. Fitzgerald Ph.D. UNC (2005) New stable beam studies (Seattle) • Working on increasing beam intensity • More activity: ORIC & Debrecan • Cathode geometry (~2x) • Low energy beam transport (?) • 40 counts/day (1 MeV) • 10 counts/day (0.3 MeV) 8x1077Be/s (5x)

  12. 3. The 180-keV resonance in 17O+p 17O(p,)14N at CSNSM-Orsay 17O(p,)18F at LENA 17O(p,)14N rate increased by ~100 times Chafa et al., PRL 95 (2005) 031101. 18F production reduced by ~3-8 times in novae Fox et al., PRC 71 (2005) 055801.

  13. YY1 17O,12C Differential pumping CD  17O 14N C foil 10 g/cm2 Roots pumps 4 Torr H2 10 cm 15 10 log counts Strip # 5 1 0 20 40 60 80 100 z-distance (mm) 0 1 2 3 E-YY1 (MeV) 3 Novel approach to(p,) resonances 2 S1 E-CD (MeV) 1 17O(p,)14N <50 mT 0 0 1 2 3 E-YY1 (MeV) 3.32 MeV 3.34 MeV ~25% of 4 E strip #  vertex

  14. Stopping power for 17O in H2 • Stopping power for oxygen ions in H2 gas determined from position of resonance • Position of resonance determined independently from  and 14N kinematics 62(10-15) eVcm2 14.3 mm (631) x 10-15 eVcm2 At 195 keV/u (near peak) 64(10-15) eVcm2 SRIM 2003: 60 x 10-15 eVcm2

  15. 4 Torr Results 1 Torr • Consistent resonance strength found independent of position or pressure “on resonance” • Precision limited primarily by stopping powers • 20 keV beam energy loss (at P~4 Torr) before chamber • Results agree with Chafa et al. +0.1 -0.4 6% α+12C stopping 3% α strength 5% 17O+H2 stopping

  16. 2. 7Be(p,)8B Summary & Outlook • Mach I - 24% uncertainty at Ecm ~ 1.5 MeV • Systematic uncertainties less than 5% within reach • Mach II planned - 5% measurement at Ecm ~ 1.0 MeV • 10 days of beam time at 8x107 pps • Mach III? 3. (p,) reactions • Sensitive approach developed for narrow resonances • High yield: 25% 4 pure H2 target (3x) • Low background • 183 keV resonance in 17O(p,)14N measured • Results in good agreement with Chafa et al. • Submitting proposal to apply this approach to narrow resonances in 18F(p,)15O (287 keV and 330 keV)

  17. Thanks HRIBF StaffDOE Office Nuclear Physics 2. 7Be(p,)8B • R.P. Fitzgerald (UNC Grad Student) • D.W. Bardayan, J.C. Blackmon, K.Y. Chae, A.E. Champagne, U. Greife, K.L. Jones, R.L. Kozub, R.J. Livesay, Z. Ma, C.D. Nesaraja, S.D. Pain, F. Sarazin, M.S. Smith, D.W. Stracener, J. S. Thomas, D. W. Visser 3. (p,) reactions • B.H. Moazen (UT Grad Student) • D.W. Bardayan, J.C. Blackmon, K.Y. Chae, K. Chipps, C.P. Domizioli, R. Fitzgerald, U. Greife, K.L. Jones, R.L. Kozub, R.J. Livesay, C.D. Nesaraja, S.D. Pain, J.F. Shriner Jr., M.S. Smith, J. S. Thomas

More Related