1 / 16

◆ 证明: ①设 α =∑x i α i , 则 < α,α >=< α,∑ x i α i >=∑x i < α,α i >=0 ,∴α =0 .

▲ Ex .2 设 α 1 , …… , α n 为欧氏空间V的一个基 , 证明 : ① 如果 α∈ V , 且 < α,α i > =0 , (i=1 , … , n) , 则 α =0. ②如果 α,β∈ V , 且对任意 γ∈ V , 都有 < α,γ> = < β,γ>, 则 α = β. ◆ 证明: ①设 α =∑x i α i , 则 < α,α >=< α,∑ x i α i >=∑x i < α,α i >=0 ,∴α =0 .

terra
Télécharger la présentation

◆ 证明: ①设 α =∑x i α i , 则 < α,α >=< α,∑ x i α i >=∑x i < α,α i >=0 ,∴α =0 .

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ▲Ex.2 设α1,……,αn为欧氏空间V的一个基,证明: ①如果α∈V,且< α,αi >=0,(i=1,…,n), 则α=0. ②如果α,β∈V,且对任意γ∈V,都有< α,γ>=< β,γ>,则α=β.

  2. ◆证明: ①设α=∑xiαi,则 <α,α>=<α,∑xiαi>=∑xi<α,αi>=0,∴α=0. ②∵<α-β,γ>=<α,γ>-<β,γ>=0, 又γ是任意的,∴α-β=0,α=β.

  3. ▲Ex.3 设U,W为n维欧氏空间V的子空间,dimU<dimW.证明: W中至少有一非零向量与U正交. ◆证明: 若W∩U⊥={0},则 dimW+dimU⊥ = dim(W+U⊥)≤n, 又dimU+dimU⊥=n, ∴dimW≤dimU,矛盾.

  4. ▲Ex.4 设E为n阶单位矩阵,X为R上的n维列向量,H=E-2XX', 若X'X=E,求证H是正交对称矩阵. ◆证明:∵H'=(E-2XX') ' =E-2XX' =H, ∴H对称矩阵. ∵X'X=E,∴(XX')2=E, ∴H'H=HH'=H2 =(E-2XX')2 =E+4(XX')2-4XX' =E, ∴E是正交矩阵.

  5. ▲Ex.5 设A,B是n阶正交矩阵,证明AB也是正交矩阵. ◆证明: ∵A-1=A' , B-1=B' , ∴(AB)-1=B'A' =(AB) ', 即AB为正交矩阵.

  6. ▲Ex.6 证明:两个对称变换σ与τ的积στ也是对称变换的充要条件是 στ=τσ.

  7. ◆证明:必要性:对于任意的ξ,η, ∵σ,τ,στ为对称变换, ∴(στ(ξ),η)=( ξ,στ(η)), ( στ(ξ),η)=(τ(ξ),σ(η))=(ξ,τσ(η)), 即对于任意的ξ,(ξ,στ(η))=(ξ,τσ(η)), ∴στ(η)=τσ(η),但η是任意的,∴στ=τσ.  充分性:对于任意的ξ,η, ∵στ=τσ, σ,τ为对称变换, ∴(στ(ξ ),η)=(τ(ξ),σ(η)) =(ξ,τσ(η))=(ξ,στ(η)), ∴στ为对称变换

  8. ▲Ex.7 证明:欧氏空间的正交变换的特征根只能为±1. ◆证: 设λ为σ的特征根,则λ为实数且存在ξ≠0,使得σ(ξ)=λξ, ∵σ为正交变换,∴(ξ,ξ)=(σ(ξ),σ(ξ)) =(λξ,λξ)=λ2(ξ,ξ). ∵ξ≠0,∴λ2=1,λ=±1.

  9. ▲Ex.8 设A为n阶实矩阵,U为A的列空间,W为A'X=0的解空间, 则W=U⊥.

More Related