1 / 38

SAFIR  : Un accélérateur Van de Graaff pour l’analyse de couches minces et ultra-minces

Equipe Couches Nanométriques : Formation, Interfaces, Défauts. SAFIR  : Un accélérateur Van de Graaff pour l’analyse de couches minces et ultra-minces. SAFIR. The SAFIR Laboratory. General purpose IBA chambers 10 -7 mbar RBS, NRA, NRP, ERDA Fast opening and pumping

thuyet
Télécharger la présentation

SAFIR  : Un accélérateur Van de Graaff pour l’analyse de couches minces et ultra-minces

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Equipe Couches Nanométriques : Formation, Interfaces, Défauts SAFIR : Un accélérateur Van de Graaff pour l’analyse de couches minces et ultra-minces SAFIR

  2. TheSAFIRLaboratory • General purpose IBA chambers • 10-7 mbar • RBS, NRA, NRP, ERDA • Fastopening and pumping • Large sampleholder • Goniometerchamber for channeling • UHV goniometerchamber • 10-11 mbar • LEED/Auger • Channeling/Blocking • Evaoprators • Sampleheating and cooling • Rare gashandling • 2.5 MV Van de Graaff • 1H, 2H, 3He, 4He, C,N,O etc • Stable operation down to < 150keV • Beam energy resolution 50-100eV • Several mA in 2mm at target • MEIS ~10 permanent research/teaching staff 3 1/3 dedicated technical staff

  3. Ion BeamAnalysis (IBA) • Energy loss • PIXE • Elastic Scattering • Nuclear Reactions • Narrow resonance profiling Energy range 0.1-10 MeV Projectiles protons, deuterons, alphas, 3He

  4. Quelques sections efficaces Pour un proton dans le silicium

  5. The stopping power

  6. The stopping power Dx E-DE E N atoms cm-3 Density r g cm-3 Units : eV cm2 atom-1 eV cm2mg-1 eV nm-1

  7. Rutherford Backscattering Spectrometry RBS

  8. Détecteur particules 4He+ Bague isolante Porte échantillon

  9. Nombre de coups E E Atome d’Or Atome d’Aluminium x x E K1E0 K2E0 x Détecteur particules

  10. RBS - principle Intensity gives concentration Energy gives mass scale Energy loss gives depth scale Analytique ! Beam loses energy 4He+ Energy E Trace of heavy element in a light substrate - eg Au in Si Si Depth Si surface Detector E1 = k1 E E2 = k2 E Au Depth Yield Au surface Energy 0 E1 E2

  11. Taken from work with R. Serna et al, Instituto de Optica, Madrid Real RBS - Cu/Al2O3 Composite formed by alternate pulsed laser deposition of Cu and Al2O3. Non-linear optical properties – amplification … Structure supposed for RBS simulation Surfaces layers, plus 7 times 90x1015 cm-2 Al2O3 (10nm) 45 Al2O3+30%Cu plus 120x1015 cm-2 Al2O3 32 Al2O3+70%Cu Artificially nanostructured Cu: Al2O3 films produced by pulsed laser ablation. R. Serna, C.N. Afonso, C. Ricolleau, Y. Wang, Y. Zheng, M. Gandais, I. Vickridge.Appl. Phys. A. 71 (2000), 583-586.

  12. RBS – Anodisation of Au/Al alloy Au/Al alloy (4.5%Au) Anodic oxide From P. Skeldon et al, Corrosion Centre, University of Manchester H. Habazaki, K. Shimizu, P. Skeldon, G.E. Thompson, G.C. Wood, and X. Zhou, J. Phys. D: Appl. Phys. 30, 1833 (1997).

  13. RBS : Performances (conditions favorables) • Sensibilité : 1014 at/cm2 • Résolution en profondeur : 10 nm • Résolution en masse : 1 amu jusqu'à ~40 amu • Durée d'analyse : 5 minutes • Nécessite vide : <10-5 mbar

  14. Nuclear Reactions

  15. Nuclear Reactions • Chargedparticleinducedreactions : NRANuclearReactionAnalysis • Interaction isinelastic: internalenergyneeds to beincluded in the kinematics. • NRA is isotope-sensitive (residual nucleus in ground state) (residual nucleus in nth excited state, of energy En)

  16. E.g. (d,p) reactions on light nuclei NRA Kinematics qlab=150°, Ed=1.4 MeV, mylar foil 12mm stops 0.9 MeV 2H 2.8 MeV 4He

  17. NRACross sections • Strong variation with E0 • Strong variation with q • Few reliable nuclear models • see SigmaCalc See http://www-nds.iaea.org/ibandl/, and R33 files distributed with SimNRA

  18. NRA Thin Sample Principle Cross section 2H+ 16O(d,p1)17O qlab=150° 12 10 Absorber foil 8 ) -1 Detector (mb sr 6 16O(d,p1)17O s 4 16O(d,p0)17O 2 0 400 500 600 700 800 900 1000 1100 1200 Energy (keV) Yield 12C(d,p0)13O Incident beam energy Energy (MeV)

  19. Thin and Thick target NRA spectra NRA Spectra from thin and thick Ta2O5 with small carbon contamination

  20. NRA – isotopic profiling Simultaneous profiling of 14N and 15N via 14N(d,a1)12C and 14N(d,a0)13C respectively. Nitridation of a Ti6Al4V alloy : artificial hip, to improve biocompatibilty Strong nitrogen exchange between the gas and the nitride is observed. From I.C. Vickridge et al. Nucl. Instr. And Meth. B99 (1995) 454.

  21. NRA : Performances (conditions favorables) • Sensibilité : 1014 at/cm2, 0.1% • Résolution en profondeur : 100 nm • Spécificité isotopique : Elements légers (H-Si) • Durée d'analyse : 5 minutes • Nécessite vide : <10-5 mbar

  22. High depth resolution IBA e.g. RBS, DEdet= 10keV : 2MeV 4He in Ni Dx=16nm 500 keV 4He in Si Dx=29nm Reduce Dx? • Remove the detector NuclearResonanceProfilingNRP • ReduceDEdetElectrostatic or Magneticspectrometers • MEIS

  23. 16O2 then 18O2 Si SiO2 exchange growth 800 600 400 200 18O(p,a)15N resonance at 151 keV. 0 150 155 160 165 170 175 180 Narrow Resonance Profiling

  24. Growth of SiCnanocrystals at the SiO2/SiC interface 13C180 • Silicon with thermally grown SiO2 • 1100°C annealing under CO • Quartz furnace • The use of 13C18O allows us to : • observe the fate of C onlyfrom CO (13C) withoutbeingconcernedwith C contamination • quantitativelydetermine the fate of 18O from the CO (Si16O2matrix) SiO2 SiO2 SiC Moiré pattern Si Si Epitaxial 3C - SiC Cross sectional TEM image of a (100) Si/SiO2 system annealed in 100% CO at 1 Bar at 1100oC for 2hrs

  25. Typical excitation curve 18O Excitation curves after 1100°C treatment for 90 min at 350mbar The three regions in the 18O concentration profile reflect 3 processes • CO diffusion with exchange in volume Process I • Oxygen exchange at surface Process II • + oxygen network diffusion • Oxygen incorporation at interface Process III Volume 16O-18O exchange Process I Interface reaction CO interstitiel diffusion SiC Process II SiO2 Si An 18O study of the interaction between carbon monoxide and dry thermal SiO2 at 1100°C. Catherine Deville Cavellin, Isabelle Trimaille, Jean-Jacques Ganem, Marie D’Angelo, Ian Vickridge, Anita Pongracz and Gabor Battistig. Journal of Applied Physics (2009), 105, 033501. Isotopic tracing study of the growth of silicon carbide nano-crystals at the SiO2/Si interface by CO annealing. A. Pongracz, Y. Hoshino, M. D’Angelo, C. Deville Cavellin, J.-J. Ganem, I. Trimaille, G. Battistig, K.V. Josepovits, I. Vickridge. Journal of Applied Physics (2009) 106, 024302.

  26. Ratio of O to C incorporated in the interface region 90 min, 1100°C We can now confidently conclude that for each C atom incorporated in a SiC nano-crystal, an oxygen atom is incorprated in the SiO2/Si interfacial region.

  27. Medium Energy Ion Scattering Electrostatic detector Semiconductor detector p-type silicon depleted region undepleted region deposited energy

  28. Détecteur électrostatique toroïdal • permettant une analyse simultanée • en énergie (profil de composition) • en angle (structure) • des ions rétro-diffusés dans les premiers nm. Si(100) 13A SiO2 46A La2Si2O7

  29. MEIS : Typical example La2O3 (high k) deposited on Si, then oxidised : chemical reaction … RBS relatively classical 200keV 4He+ dét. 15keV Medium Energy Ion Scattering (from M. Copel et al, IBM Almaden)

  30. Comparaison MEIS – RBS MAIS : temps d’acquisition des spectres (RBS = 101 minutes, MEIS = 102 minutes dégâts induits dans l’échantillon physique sous-jacente +compliquée, moins bien maitrisée

  31. One important topic we have not talked about : ion channelling Amorphisation of Si by implantation of 29Si But, damage …

  32. Augmenter l'angle solide des détecteurs de particules, sans perdre en résolution en énergie • Réduire dose nécessaire pour obtenir spectres utiles (Aussi polymères, hydrogène …)

  33. Design and build large area segmented particle detectors. Matrice de 16 détecteurs pour ERDA (détection H) Matrice de 16 détecteurs pour RBS 16 spectra collected simultaneously, at various angles 20 to 40 times greater solid angle for detection Spectroscopic tests underway in Rossendorf. Installation at INSP at end 2010 probably… Détecteurs pour tests

More Related