1 / 31

SPL  Fréjus

SPL  Fréjus. J-E Campagne Linear Accelerator Laboratory – Orsay – France Thanks: A. Cazes, M. Mezzetto, Th. Schwetz and the GLoBES team and AM Lombardi, R. Garoby. CERN SPL. LSM-Fréjus. Near detector. 130km. TRE. A possible schema. Related talks.

tino
Télécharger la présentation

SPL  Fréjus

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. SPLFréjus J-E Campagne Linear Accelerator Laboratory – Orsay – France Thanks: A. Cazes, M. Mezzetto, Th. Schwetz and the GLoBES team and AM Lombardi, R. Garoby

  2. CERN SPL LSM-Fréjus Near detector 130km TRE A possible schema Related talks + BetaBeam: see M. Mezzetto + ATM n: see Th. Schwetz Machines R. Garoby & M. Lindroos

  3. 2.2GeV SPL block diagram (CDR 1) Characteristics (Conceptual Design Report 1): • are “optimized” for a neutrino factory • assume the use of LEP cavities & klystrons up to the highest energy

  4. Gradients at 700 MHz from Stephane Chel, HIPPI04, Frankfurt, sep04 • Last test performed in CryHoLab (July 04): • 5-cells 700 MHz ß=0.65 Nb cavity A5-01 • from CEA/Saclay and IPN-Orsay LEP cavities may have worked 350MHz & 3.6MV/m effective gradient NuFact Note 040

  5. p p n p New optimization questioned @ MMW04* • Particle production • Horn design optimisation • Decay tunnel parameter optimisation • Flux computation at Fréjus • q13and dCP sensitivity. LAL – 04-102 submitted to EPJC *: Multi MegaWatt Workshop at CERN 26-28 May 04

  6. Particle production • Proton beam : • Pencil like • Ek=2.2GeV, 3.5GeV… • Target : • 30cm long cylinder, 15mm in Liq. Hg • FLUKA 2002.4 • Normalized to a power of 4MW: • 1.14 1023 pot/yr @ 2.2GeV • 0.71 1023 pot/yr @ 3.5GeV

  7. nFact Super Beam px/pz px/pz ½ rad 20 mrad x x 2 m 30cm Decay channel solenoids Aperture and B strength Spot size @ 130km Decay tunnel size SuperBeam vs nFact Optics Thanks S. Gilardoni

  8. at the exit of the target 2 105 pot SB Horn optimisation by S. Gilardoni nFact This new optimisation p+ p (2.2GeV) Hg Pion production Rule of thumb: Ep/3~ En(GeV)2.L(km)

  9. p+ K+ p- Not physical dip !!! Not Used… K0 K- 2.2 3.5 Ep(GeV) Ep(GeV) Kaon production? see BENE meeting 11/09/03 For 500 000 pot • at 2.2GeV : • 0.26 p+/s • 0.8 10-3 K+/s • at 4.5GeV : • 0.32 p+/s • 5.2 10-3 K+/s • at 3.5GeV : • 0.29 p+/s • 2.8 10-3 K+/s

  10. 80 cm 140 cm 220 cm Horn design parameter Conductor thickness : 3mm horn : 300kAmps reflector : 600kAmps Challenging!!! Drawing from the horn built at CERN Optimized for Super Beam En~300MeV Ep~800MeV + or - focusing Using Geant 3.2.1 NuFact-Note 138

  11. Length modify purity L=10m, 20m, 40m and 60m have been tested. 10m40m nm , nm + 50% to 70% ne , ne + 50% to 100% 40m60m nm , nm + 5% ne , ne+ 20% 40m seems better Radius modify acceptance R=1m, 1.5m and 2m have been Tested 1m 2m (L=40) nm , nm +50% ne , ne +50% to 70% Larger is better (2m)… Decay Tunnel Parameters This results have been checked on sensitivity to q13 and dCP

  12. <En> ~ 300 MeV, 1.2 1014/100m2/yr 3.5GeV SPL optimum <En> ~ 275MeV, 4.5 1013/100m2/yr Old nFact optimum Fluxes comparison @ 130km ~95 nmCC/kT/yr* <En> ~ 245 MeV, 7.5 1013/100m2/yr 2.2GeV SPL optimum *: Lipari x-sect. (see later)

  13. x1/140 x1/3000 x1/17 Flux @ 130km: + focusing http://opera.web.lal.in2p3.fr/horn/Simu/index.htm nm ne p+ m+ 3.5GeV Kinetic p beam ~800MeVp focusing 40m decay tunnel length 2m decay tunnel radius ne nm ~1/2 m- ~1/2 K0e3 p-

  14. nmSPL The X-sections ---: Lipari et al. on H20 bB is an ideal tool to measure these cross-sections and a 2% systematic error on both signal and background are used.

  15. Analysis: GLoBES + M. Mezzetto’s parameterization file 440kT x 5yrs: 2,2 Mt.yrs (+) sin22q12=0.82, q23=p/4, Dm221=8.1 10-5eV2, Dm231=2.2 10-3eV2 Reduction factor and efficiencies taken from SK simulation (D. Casper) and a tight cut for e/m misId. (cf. hep-ph/0105297)

  16. 440kT x 8yrs: 3,5 Mt.yrs (-) sin22q12=0.82, q23=p/4, Dm221=8.1 10-5eV2, Dm231=2.2 10-3eV2

  17. dCP=0 90%CL New Opt. Old Opt. preliminary Some physics performances 440kT water Č, 4MW SPL, opti. Fluxes 5yrs (+) True values: (Dm23, sin22q13) sin22q12=0.82, q23=p/4, Dm221=8.1 10-5eV2 5% external precision on q12andDm221 and use SPL disappearance channel and spectrum analysis* 2% syst. on signal & bkg Sin22q13(90%CL) = 610-3 (0.7°) sizeable improvement *: 5 bins [0.08,1.08] GeV (2(2dof)=4.6 or 11.83)

  18. Rate only 2yrs (+) 8yrs (-) 2yrs (+) 8yrs (-) Spectrum analysis (prelim.) T2K-I Old SPL x10 5yrs (+) preliminary preliminary 90%CL (2(2dof)=4.6) Some physics performances True values: dCP=0, q13=0, sin22q12=0.82, q23=p/4, Dm221=8.1 10-5, Dm231=2.2 10-3 5% external precision on q12andDm221 and use SPL disappearance channel Improve T2K-I 2% syst. on signal & bkg

  19. CP discovery @ 3s Old Opti. New Opti. 2yrs (+) 8yrs (-) preliminary Some physics performances True values (dCP,q) Tests dCP=0 and dCP=p sin22q12=0.82, q23=p/4, Dm221=8.1 10-5, Dm231=2.2 10-3 5% external precision on q12andDm221 use SPL disappearance channel 2% syst on signal & bkg Use glbChiDelta and 2 (1dof)=9

  20. 0.5 0.5 New Prelim. NNN05 Solid: SPL+ATM Dashed: SPL only 0 0 “nFact opt.” “ 3.5 GeV opt.” d/p Wrong hierarchy and q23 d/p Wrong hierarchy -0.5 -0.5 Wrong q23 true -1 -1 90%CL 0.02 0.02 0.04 0.04 0.06 0.06 sin22q13 sin22q13 Evolution of the performances 2yrs (+), 8 yrs (-) True values: dCP/p =-0.85, sin22q13=0.03, sin2q23=0.4, 5% external precison on Dm221=8.1 10-5, Dm231=2.2 10-3, q23 cf. Th. Schwetz

  21. CDR2 block diagrams CERN proton complex 1-2GeV Eurisol, bB 2-3.5GeV SuperB, NuFact

  22. Global planning (R.G courtesy) RF tests in SM 18 of prototype structures* for Linac4 3 MeV test place ready Linac4 approval SPL approval CDR 2

  23. Summary • Higher proton energy & SB Horn specific • new baseline: 3.5GeV/2m/40m • q13sensitivity: • sensitivity to q13 = 0.7° (5yrs +): gain +25% wrt old result • down to q13 = 1.4° with the 10yrs mixed scenario independently of dCP • Improve T2K-I by a factor 10 at dCP = 0 (5yrs +) • Can discover CP violation • Can solve ambiguities alone and result is improved thanks to ATMn(Th. Schwetz ‘s talk) • Complementary to BetaBeam to cross check the background and improve dCP sensitivity(M. Mezzetto’s talk) Thank you

  24. END

  25. q13 and dCPSensitivity computation • Use GLoBES v2.0.11 and M. Mezzetto SPL.glb file • detector: • Water Cerenkov • 440 kt • at Fréjus (130 km from CERN) • Run: • 5 years p+ • 1 year p+ + 4 years p- • 2 years p+ + 8 years p- • Computed with dCP=0 (standard benchmark) and q13 = 0 • other parameters… • Dm23 = 2.5 10-3eV2 • Dm12 = 7.1 10-5eV2 Same duration Same statistics • sin22q23 = 1.0 • sin22q12 = 0.82

  26. Flux @ 130km: - focusing 1/3 m+ 1/3 K0e3 1/3 K+e3 p+ nm ne 3.5GeV Kinetic p beam ~800MeVp focusing 40m decay tunnel length 2m decay tunnel radius x1/1300 x1/10 x1/200 p- m- ne nm

  27. Focusing comparison Dm223 (eV2) Dm223 (eV2) En~260MeV 10-3 10-3 dCP = 0 dCP = 0 sin22q13 sin22q13 10-3 10-3 tunnel : 40m long 2m radius Ek = 4.5GeV En=300MeV Best sin22q13 > 7.1 10-4 5 years positive focusing Energy comparison

  28. 300MeV 4.5GeV 300MeV 3.5GeV 260MeV 3.5GeV 2.2GeV 3.5GeV 4.5GeV 8GeV tunnel : 40m long 2m radius Ek = 3.5GeV En=300MeV Best sin22q13 > 2.02 10-3 positive focusing vs 10 years mixed scenario. Focusing comparison Energy comparison 2y+ 8y- 5y+ 50 0 0 -50 -50 2y+ 8y- 5y+ -100 -100 -150 -150 10-3 10-4 10-3 10-4 10-4 10-3 10-3 10-4 90%CL

  29. General comparison. • for 10 years in mixed focusing, sensitivity around q13~1° • Clear complementarily between positive scenario and bbeam (dCP>0) 5y mixed focusing 10y mixed focusing 5y positive focusing

  30. from p and m from K0 from K Ekine (GeV) Ekine (GeV) evts/100m2/y Ekine (GeV) Ekine (GeV) Ek=3.5GeV En ~300MeV L = 40m,R=2m Neutrino Flux 100km away p+ focusing

  31. MARS vs FLUKA At the entrance of the SB decay tunnel (after the horn focusing) R = 1m No angular cut Discrepancies reduced in the beam line A. Cazes thesis

More Related