560 likes | 576 Vues
Penyakit Tanaman: Bagaimana Dapat Mempengaruhi Ketahanan Pangan dan Bagaimana Dipengaruhi Perubahan Antropogoni. Oleh Irda Safni. Tetapi kehilangan hasil dapat lebih tinggi lagi ketika : Patogen baru diintroduksi Kondisi cuaca yang optimal Tanaman ditanam secara skala besar monokultur.
E N D
Penyakit Tanaman:Bagaimana Dapat Mempengaruhi Ketahanan Pangan dan Bagaimana Dipengaruhi Perubahan Antropogoni Oleh Irda Safni
Tetapi kehilangan hasil dapat lebih tinggi lagi ketika : • Patogen baru diintroduksi • Kondisi cuaca yang optimal • Tanaman ditanam secara skala besar monokultur Tanaman inang yang rentan Secara umum, sekitar 16% tanaman kehilangan hasil akibat penyakit tanaman setiap tahunnya. Penyakit Lingkungan yang kondusif Patogen yang virulen
Manusia dapat menyebabkan: • Transportasi tanaman dan mikroba yang lebih sering • Perubahan iklim (meningkatnya suhu & curah hujan) • Perluasan pertanian dalam skala industri
Stem rust of wheat: Biblical times – present (widely planted crop, mobile and rapidly evolving pathogen; big concern about aggressive new race Ug99) Irish potato famine: 1846-48 (widely planted genetically uniform crop, pathogen introduction, cool wet weather) Southern Corn Leaf Blight: 1970 (widely planted crop, genetically uniform at one locus, selected for a virulent variant of an existing pathogen) U.S. Citrus Greening Epidemic: 2005 – present (genetically uniform crop, introduced vector, then introduced pathogen) Beberapa Tanaman Berdampak Epidemik Tinggi
Jenis-jenis Patogen Tanaman Faktor-faktor yang mempengaruhi munculnya penyakit
Best way to manage plant diseases: breed for disease resistance
Emerging infectious diseases(EIDs) : used in medical science, veterinary field and apply to use in botany
Emerging infectious diseases(EIDs) • are caused by pathogens that : • have increased in incidence, geographical or host range • have changed pathogenesis • have newly evolved • have been discovered or newly recognized
The emergence of plant EIDsfactors • Pathogen pollution • : the movement of pathogen outside their natural geographical or host-species range • Climate change • : temperature, precipitate • Agriculture change • : intensification, diversification, globalization
Climatechange • Temperature • Precipitation • Carbon dioxideconcentration
Industrial activity, from the burning of fossil fuels such as coal, oil, and gas, generates CO2 and other gases which trap the sun’s ray in the atmosphere and enhance the natural “greenhouse effect” (Gore, 2006).
Before the early 1800s the atmosphere contained about 290 ppm CO2 • 1995 the figure was 360 ppm • According to World Organization, CO2 reached 379 ppm in 2006. • It is estimated the CO2 level will increase to 800 ppm by the end of the century and bring serious consequences to plants (IPCC, 2001). CO2/ppm 800 700 600 500 400 300 200 100 0 290 CO2/ppm 1800 years
Changes in the frequency of temperature may have a greater effect on biological and agricultural systems than changes in mean climate. • Projected changes of periods of higher humidity / precipitation will increase plant diseases (Carroll and Wilcox, 2003; Pardo et al., 2005) and result in the need for extensive disease control.
Effect of Environment on Plant Disease Development • In general, epidemics of plant disease occur as the result of interactions among three major factors • Population of plant • Population of pathogens • The environment Pathogen Environment Total of virulence, abundance, etc Total ofconditionsfavoringdisease Amount of disease Total of conditions favoringsusceptibility Host The diseasetriangle
Impact of climatechange • Pathogen (elevate temperature) • increase winter survival of plant pathogen, accelerated vector and pathogen life cycles • survive outside their historic range • geographic expansion of pathogen • Influence pathogen populations reproduce sexually or asexually
Impact of climatechange • Plant (elevated CO2) • increase leaf area, leaf thickness • higher number of leaves, total leaves area per plant • enhance photosynthesis • increase water use efficiency • increase infection rates
Impact of climatechange • Plant (elevatedtemperature) • wilting • leafburn • leaffolding • abscission • affect susceptibility topathogen
Impact of climatechange • Dampak langsung perubahan iklim terhadap kesehatan tanaman: • Meningkatkan evolusi patogen • Memperpendek periode inkubasi untuk meningkatkan stres abiotik disebabkan ketidakcocokan ekosistem dan iklimnya dan lebih sering terjadinya cuaca yang ekstrim. • Kekeringan diduga menyebabkan meningkatnya patogen pada tanaman, terutama disebabkan pengaruh secara tidak langsung terdadap fisiologi inang. • Kekeringan juga dapat menyebabkan pengaruh langsung terhadap patogen.
Impact of climatechange • Pemanasan global juga berhubungan dengan perubahan inang tanaman bagi beberapa jenis jamur. • Pengaruh langsung dari pemanasan global adalah meningkatnya polutan dan konsentrasi CO2 yang akan diikuti oleh introduksi spesies patogen baru yang invasif.
Downy mildew (Plasmopara viticola) epidemic on grapevine under climate change
RESULTS • The climate change model predicted air temperature increases and rainfall reductions leading to increase in disease pressure from P. viticola • under climate change, warmer temperature can significantly increase the opportunities for the pathogen to growth, leading to increase of downy mildew pressure in grapevine in the coming decade
Lower expression of HR and other genes associated with disease resistance in big bluestem in response to simulated precipitation change Travers et al.2007 SteveTravers
Phytohormone responses to disease and drought stress in big bluestem Jasmonic acid and salicylic acid increase in response to rust infection in plants without drought stress ErinFrank Under drought stress, plants don’t respond in this way Drought stress doubles disease severity in this system
Xa resistance genes, except Xa7, are less effective at higher temperatures 3.5 a Lesion length(cm) 35°C day/29°C night 29°C day/21°C night a 2.5 b 1.5 a b b b 0.5 a a a Xa3 Xa4 xa5 Xa7 Xa10 Rice bacterial blight resistance gene Webb et al., unpubl. c/o JanLeach
Stomatal closure and leaf growth inhibition during drought (e.g., Chaves et al. 2003) Plant structural changes in response to CO2 (Pritchard et al. 1999) Higher fecundity of Colletotrichum gloeosporioides under increased CO2 (Chakraborty and Datta 2003)
Phytophthora cinnamomi predicted expansion in Europe due to temperature change from General Circulation Models (Bergot et al. 2004)
Soybean rust pathogen immigration to US potentially via Hurricane Ivan Invasive species Kudzu will probably play important role in epidemiology Dry conditions have probably slowed movement through the US
The Impacts of Global Warmingon Plant PathogenicBacteria • Temperature • Air Temperature • Temperature can direct affect the multiplication of pathogenic bacteria, influencing the incidence of disease development. • The optimum ,maximum ,and minimum growth temperature are different, depending on the species or strain of bacteria
Ralstoniaspp. • R. solanacearun (RS), a soilborne pathogen with a very wide host range. • Gram-negative. It colonies thexylem, causing a bacterial wilt. • The common R. solanacearum race 3 biovar 1 strain is found in solanaceous • crops throughout the tropic and subtropics (Kelman, 1953; Titatarn, 1986). • In this cause Thailand founded race 1 biovar3, biovar 4. • biovar 3 Solanaceae • biovar 4 Zingiberraceae
Burkholderiaspp. • Burkholderia includes several important pathogen : • B. glumae on rice; • B. gladioli on onion, garlic, orchid and gladiolus and has emerged as a serious, widespread disease in many • different orchids in Thailand (P. Thammakijjawat, Thailand • Department of Agriculture, personal communications). ; • B. andropogonis on sorghum, jojoba • Bacteria is optimum growth temperature at 32-36°C ; most grow well at 41-42°C Burkholderia glumae colony on King’s medium B medium
Bacterial panicle blight infection of rice grain showing characteristic two tone discoloration symptom Bacterial panicle blight infect ion of rice heads in the field showing cluster of upright discolored heads B. gladioli was described in Thailand on Dendrobium orchids in 1983 (Chuenchitt et al ) Gladiolus plant inoculated with B.gladioli
Acidovoraxspp. • Gram-negative, oxidase positive, non-fluorescent on King’s medium B, • Growth at 41°C • Acidovorax avenae subsp. avenae has emerged as a disease of upland rice in Southern Europe during periods of high temperature • A. avenae subsp. citrulli cause of Bacterial fruit blotch (BFB)is a disease of watermelon and other cucurbit crops. Bacterial isolates recovered on nutrient agar (NA)
Water-soaked spots on the surface and cotyledon of a honeydew fruit infected with Acidovorax avenae subsp. citrulli. (Courtesy R. Walcott) corn Bacterial brownstripe Causal organism: Acidovoraxavenae subsp. avenae (Willems et al.1992) wheat
Banana Xanthomonas Wilt in EastAfrica A widely planted crop selected for an emergingpathogen
Bananas: • World’s 4th most important food crop • Less than 10% are grown for export; 90% are locally consumed • Nutritious • Productive • Adaptable
Bananas supply 30-60% of daily calories in Uganda, Rwanda & Burundi
In 2001 a new banana disease appeared inAfrica: BananaXanthomonasWilt,or BXW
Symptoms of BXW: • Yellowed, dying leaves • Early fruit ripening • Wilted male flowers • Discolored, inedible fruits