1 / 15

Gliederung

Gliederung. Populäre Einführung I: Astrometrie Populäre Einführung II: Hipparcos und Gaia Wissenschaft aus Hipparcos-Daten I Wissenschaft aus Hipparcos-Daten II Hipparcos: Technik und Mission Astrometrische Grundlagen Hipparcos Datenreduktion Hauptinstrument

trixie
Télécharger la présentation

Gliederung

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Gliederung • Populäre Einführung I: Astrometrie • Populäre Einführung II: Hipparcos und Gaia • Wissenschaft aus Hipparcos-Daten I • Wissenschaft aus Hipparcos-Daten II • Hipparcos: Technik und Mission • Astrometrische Grundlagen • Hipparcos Datenreduktion Hauptinstrument • Hipparcos Datenreduktion Tycho • Gaia: Technik und Mission • Gaia Global Iterative Solution • Wissenschaft aus Gaia-Daten • Sternklassifikation mit Gaia • SIM und andere Missionen

  2. Sternklassifikation mit Gaia

  3. Object classification/physical parametrization • classification as star, galaxy, quasar, supernovae, solar system objects etc. • determination of physical parameters: • - Teff, logg, [Fe/H], [/H], A(), Vrot, Vrad, activity etc. • combination with parallax to determine stellar: • - luminosity, radius, (mass, age) • use all available data (photometric, spectroscopic, astrometric) • must be able to cope with: • - unresolved binaries (help from astrometry) • - photometric variability (can exploit, e.g. Cepheids, RR Lyrae) • - missing and censored data (unbiased: not a ‘pre-cleaned’ data set) • multidimensional iterative methods: • - cluster analysis, k-nn, neural networks, interpolation methods • required for astrometric reduction (identification of quasars, variables etc.) • maybe discovery of new types of objects  produce detailed classification catalogue of all 109 objects

  4. Classification methodology

  5. Minimum Distance Methods (MDM)  astrophysical parameter(s) d1,d2 data D distance to a template

  6. Neural Networks

  7. Parametrization example: RVS-like data CaII (849-874nm) data from Cenarro et al. (2001) R = 5700 (1/2 GAIA) SNR (median) = 70 (90% in range 20-140) Network trained on half and tested on other half Bailer-Jones (2003) blue = training data red = test data

  8. Results: Teff and [Fe/H]

  9. Classification issues • different data sensitivities to APs (Teff strong; [Fe/H] weak) • wide range of object types • inhomogeneous stellar models • hierarchical classifier • binary stars (raises dimensionality) • stellar variability • degeneracy • inhomogeneous data • calibration • etc.

  10. CCD1b 1X CCD2 GAIA photometric systems 2B 6*Ag CCD3 Broad Band Photometer (BBP) • astrometric chromaticity correction • space for up to 7 bands • classification, Teff, extinction Medium Band Photometer (MBP) • AP determination • space for up to 16 bands Both photometric systems are still under development

  11. Filter system evaluation • synthetic spectra: - BaSeL spectra (Lejeune et al. 1997) - wide range of Teff, logg, [Fe/H] • artifically redden: - Fitzpatrick (1999) extinction curves • GAIA photometric simulator + noise model (“photsim”) • split data set into two halves 1. for model training 2. for model evaluation

  12. MBP performance estimates Accuracy varies a lot as a function of the 4 APs and magnitude Willemsen, Kaempf, Bailer-Jones (2003)

  13. Heuristic filter design • objective: design filter system to maximally “separate” a set of stars • fixed parameters: set of stars, instrument, total integration time, Nfilters • free parameters: lc (central wavelength), Dl (width), f (fractional integration time), for each filter • maximize over the set of stars:

  14. initialise population mutate filter system parameters simulate counts (and errors) from each star in each filter system select fitter filter systems (probability a fitness) calculate fitness of each filter system Evolutionary algorithm

  15. HFD: a preliminary result nominal 10-band MBP-like system red = filter transmission x fractional integration time blue = CCD QE • high reproducibility (convergence) for given fixed parameters • broader filters produced that hitherto adopted in MBP design • substantial filter overlap • fitness higher than that of existing systems (e.g. 1X)

More Related