1 / 16

Zeros of Polynomials

Zeros of Polynomials. Polynomial Type of Coefficient 5x 3 + 3x 2 + (2 + 4i) + i complex 5x 3 + 3x 2 + √2x – π real 5x 3 + 3x 2 + ½ x – ⅜ rational 5x 3 + 3x 2 + 8x – 11 integer. Zeros of a Polynomial. Rational Zero Theorem. If the polynomial

truda
Télécharger la présentation

Zeros of Polynomials

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Zeros of Polynomials PolynomialType of Coefficient 5x3 + 3x2 + (2 + 4i) + i complex 5x3 + 3x2 + √2x – π real 5x3 + 3x2 + ½ x – ⅜ rational 5x3 + 3x2 + 8x – 11 integer

  2. Zeros of a Polynomial

  3. Rational Zero Theorem If the polynomial f(x) = anxn + an-1xn-1 + . . . + a1x + a0 has integer coefficients, then every rational zero of f(x) is of the form p q where pis a factor of the constant a0 and qis a factor of the leading coefficient an.

  4. Rational Root (Zero) Theorem • If “q” is the leading coefficient and “p” is the constant term of a polynomial, then the only possible rational roots are + factors of “p” divided by + factors of “q”. (p / q) • Example: • To find the POSSIBLE rational roots of f(x), we need the FACTORS of the leading coefficient (6 for this example) and the factors of the constant term (4, for this example). Possible rational roots are

  5. List all possible rational zeros of f(x) = x3 + 2x2 – 5x – 6.

  6. List all possible rational zeros of f(x) = 4x5 + 12x4 – x – 3.

  7. How do we know which possibilities are really zeros (solutions)? • Use trial and error and synthetic division to see if one of the possible zeros is actually a zero. • Remember: When dividing by x – c, if the remainder is 0 when using synthetic division, then c is a zero of the polynomial. • If c is a zero, then solve the polynomial resulting from the synthetic division to find the other zeros.

  8. Find all zeros of f(x) = x3 + 8x2 + 11x – 20.

  9. Finding the Rational Zeros of a Polynomial • List all possible rational zeros of the polynomial using the Rational Zero Theorem. • Use synthetic division on each possible rational zero and the polynomial until one gives a remainder of zero. This means you have found a zero, as well as a factor. • Write the polynomial as the product of this factor and the quotient. • Repeat procedure on the quotient until the quotient is quadratic. • Once the quotient is quadratic, factor or use the quadratic formula to find the remaining real and imaginary zeros.

  10. Find all zeros of f(x) = x3 + x2 - 5x – 2.

  11. How many zeros does a polynomial with rational coefficients have? • An nth degree polynomial has a total of n zeros. Some may be rational, irrational or complex. • Because all coefficients are RATIONAL, irrational roots exist in pairs (both the irrational # and its conjugate). Complex roots also exist in pairs (both the complex # and its conjugate). • If a + bi is a root, a – bi is a root • If is a root, is a root. • NOTE: Sometimes it is helpful to graph the function and find the x-intercepts (zeros) to narrow down all the possible zeros.

  12. Solve: x4 – 6x3 + 22x2 - 30x + 13 = 0.

  13. Remember… • Complex zeros come in pairs as complex conjugates: a + bi, a – bi • Irrational zeros come in pairs.

  14. Practice Find a polynomial function (in factored form) of degree 3 with 2 and i as zeros.

  15. More Practice – woohoo! Find a polynomial function (in factored form) of degree 5 with -1/2 as a zero with multiplicity 2, 0 as a zero of multiplicity 1, and 1 as a zero of multiplicity 2.

  16. Double woohoo! • Find a third-degree polynomial function f(x) with real coefficients that has -3 and i as zeros and such that f(1) = 8. Extra Fun! • Suppose that a polynomial function of degree 4 with rational coefficients has iand –3 +√3 as zeros. Find the other zero(s).

More Related