1 / 59

Chapter 4

Chapter 4. Electronic Structure of Atoms. Atomic Models Review. Thomson Plum Pudding Rutherford Solar System Why didn’t it collapse? Bohr Planetary Model. Light as a Wave:. The Electromagnetic Spectrum is evidence that light has wave properties and behavior. Parts of a Wave. Amplitude.

truman
Télécharger la présentation

Chapter 4

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 4 Electronic Structure of Atoms

  2. Atomic Models Review • Thomson • Plum Pudding • Rutherford • Solar System • Why didn’t it collapse? • Bohr • Planetary Model

  3. Light as a Wave: • The Electromagnetic Spectrum is evidence that light has wave properties and behavior.

  4. Parts of a Wave Amplitude Y Z Amplitude X wavelength

  5. Amplitude Y height of wave at maximum Z Amplitude X

  6. Particle Nature of Light • used to describe energetics of light • describes light as a stream of tiny energy packets called photons or quanta • photons can be created (emission) • photons can be destroyed (absorption) • photons cannot be split • light energy is quantized

  7. Energy of a Photon E = h E = hc/ h = Planck’s constant, 6.626 x 10–34 J.s

  8. Bohr Model of the Atom • planetary model • p+ & n packed tightly in nucleus • considers only the particle nature of the electron • electrons traveling in circular paths, orbits, in space surrounding nucleus • orbits are quantized

  9. e– e– e– e– P+ n e– e– e–

  10. n=6 n=5 n=4 n=3 n=2 n=1

  11. n=6 n=5 n=4 n=3 n=2 n=1

  12. n=6 n=5 n=4 n=3 n=2 n=1 h h

  13. n=6 n=5 n=4 n=3 n=2 h n=1

  14. works well for hydrogen • does not work for atoms with more than 1 electron • Enter DeBroglie and matter waves •  = h/mv

  15. Quantum Mechanical Model • considers both particle and wave nature of electrons • wave equation written for each electron • wave equation squared and plotted in 3 d • orbital

  16. Orbital • region of space within which one can expect to find an electron • no solid boundaries • electron capacity of 2

  17. space surrounding nucleus divided up into large volumes called shells • shells subdivided into smaller volumes called subshells • orbitals located in subshells • as shells get further from nucleus, energy, size, and electron capacity increase • shells, subshells, orbitals described by quantum numbers

  18. Electrons Indicated by Shell and Subshell Symbolism #electrons nl# number letter

  19. Electrons Indicated by Shell and Subshell Symbolism #electrons nl# number letter 4f14 5p5 3s2

  20. s Orbital

  21. p Orbitals y y z z x x y z px py x pz

  22. y z x y d Orbitals z y x z dxy x dx2–y2 y y dz2 z z x x dxz dyz

  23. Orbital Energies 4p 3d 4s 3p 3s E 2p 2s 1s

  24. Electron Configuration • a listing of occupied subshells in order of increasing principle and azimuthal quantum numbers • ground state: lowest energy state, electrons in lowest energy levels possible

  25. H • 1s1 • He • 1s2 • Li • 1s22s1 • Be • 1s22s2 • B • 1s22s22p1

  26. Orbital Energies 4p 3d 4s 3p 3s E 2p 2s H 1s1 1s

  27. Orbital Energies 4p 3d 4s 3p 3s E 2p 2s He 1s2 1s

  28. Orbital Energies 4p 3d 4s 3p 3s E 2p 2s Li 1s2 2s1 1s

  29. Orbital Energies 4p 3d 4s 3p 3s E 2p 2s Be 1s2 2s2 1s

  30. Orbital Energies 4p 3d 4s 3p 3s E 2p 2s B 1s2 2s2 2p1 1s

  31. Orbital Energies 4p 3d 4s 3p 3s E 2p 2s C 1s2 2s2 2p2 1s

  32. Orbital Energies 4p 3d 4s 3p 3s E 2p 2s N 1s2 2s2 2p3 1s

  33. Orbital Energies 4p 3d 4s 3p 3s E 2p 2s O 1s2 2s2 2p4 1s

  34. Orbital Energies 4p 3d 4s 3p 3s E 2p 2s F 1s2 2s2 2p5 1s

  35. Orbital Energies 4p 3d 4s 3p 3s E 2p 2s Ne 1s2 2s2 2p6 1s

  36. 7s 2s 3s 4s 5s 1s 6s 2p 4p 5p 6p 3p 7p 4d 7d 3d 5d 6d 4f 6f 7f 5f

  37. 1A 8A 2 1 2A 3A 7A 6A He H 5A 4A 6 8 5 9 10 7 3 4 N C O F Ne B Li Be 11 12 18 14 15 16 17 13 3B 4B 6B 8B 8B 8B 1B 5B 7B Al Si Ar Cl 2B P Na S Mg 21 26 22 27 24 25 28 29 30 23 19 20 32 33 36 35 31 34 Sc Fe Mn Co Ni Ti Cr Cu V K Se Ca Br Ga Kr Ge As 46 47 43 39 44 40 45 41 42 48 37 38 49 50 53 51 54 52 Ag Ru Tc Rh Cd Pd Y Zr Mo Nb In Sb Te I Sn Rb Sr Xe 57 76 78 74 55 56 75 77 72 73 80 79 82 81 83 85 86 84 La Os Pt Ta Ir Au Hf W Hg Re Ba Rn Cs Pb Tl Bi At Po 87 88 89 105 109 104 108 106 107 Fr Ra P 1 2 (P–1)d 3 4 Zn 5 6 7 (P)p Ac Unh Uns Uno Une Unp Unq 63 69 68 71 60 70 59 61 64 62 66 (P)s 58 65 67 Lu Sm Gd Eu Ho Ce Tb Dy Er Pr Nd Pm Tm Yb 93 91 92 96 94 95 99 90 97 98 100 101 102 103 (P–2)f Th Lw U Np Cm Pa Pu Am Bk Cf Es Fm Md No

  38. 1A 8A 2 1 2A 3A 7A 6A He H 5A 4A 6 8 5 9 10 7 3 4 N C O F Ne B Li Be 11 12 18 14 15 16 17 13 3B 4B 6B 8B 8B 8B 1B 5B 7B Al Si Ar Cl 2B P Na S Mg 21 26 22 27 24 25 28 29 30 23 19 20 32 33 36 35 31 34 Sc Fe Mn Co Ni Ti Cr Cu V K Se Ca Br Ga Kr Ge As 46 47 43 39 44 40 45 41 42 48 37 38 49 50 53 51 54 52 Ag Ru Tc Rh Cd Pd Y Zr Mo Nb In Sb Te I Sn Rb Sr Xe 57 76 78 74 55 56 75 77 72 73 80 79 82 81 83 85 86 84 La Os Pt Ta Ir Au Hf W Hg Re Ba Rn Cs Pb Tl Bi At Po 87 88 89 105 109 104 108 106 107 Fr Ra P 1 2 (P–1)d 3 4 Zn 5 6 7 (P)p Ac Unh Uns Uno Une Unp Unq (P)s 1s22s22p63s23p4

  39. 1A 8A 2 1 2A 3A 7A 6A He H 5A 4A 6 8 5 9 10 7 3 4 N C O F Ne B Li Be 11 12 18 14 15 16 17 13 3B 4B 6B 8B 8B 8B 1B 5B 7B Al Si Ar Cl 2B P Na S Mg 21 26 22 27 24 25 28 29 30 23 19 20 32 33 36 35 31 34 Sc Fe Mn Co Ni Ti Cr Cu V K Se Ca Br Ga Kr Ge As 46 47 43 39 44 40 45 41 42 48 37 38 49 50 53 51 54 52 Ag Ru Tc Rh Cd Pd Y Zr Mo Nb In Sb Te I Sn Rb Sr Xe 57 76 78 74 55 56 75 77 72 73 80 79 82 81 83 85 86 84 La Os Pt Ta Ir Au Hf W Hg Re Ba Rn Cs Pb Tl Bi At Po 87 88 89 105 109 104 108 106 107 Fr Ra P 1 2 (P–1)d 3 1s2 2s2 2p6 3s2 3p6 4s2 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d3 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d3 5s2 4 Zn 5 6 7 (P)p Ac Unh Uns Uno Une Unp Unq (P)s

  40. 1A 8A 2 1 2A 3A 7A 6A He H 5A 4A 6 8 5 9 10 7 3 4 N C O F Ne B Li Be 11 12 18 14 15 16 17 13 3B 4B 6B 8B 8B 8B 1B 5B 7B Al Si Ar Cl 2B P Na S Mg 21 26 22 27 24 25 28 29 30 23 19 20 32 33 36 35 31 34 Sc Fe Mn Co Ni Ti Cr Cu V K Se Ca Br Ga Kr Ge As 46 47 43 39 44 40 45 41 42 48 37 38 49 50 53 51 54 52 Ag Ru Tc Rh Cd Pd Y Zr Mo Nb In Sb Te I Sn Rb Sr Xe 57 76 78 74 55 56 75 77 72 73 80 79 82 81 83 85 86 84 La Os Pt Ta Ir Au Hf W Hg Re Ba Rn Cs Pb Tl Bi At Po 87 88 89 105 109 104 108 106 107 Fr Ra P 1 2 (P–1)d 3 4 Zn 5 6 7 (P)p Ac Unh Uns Uno Une Unp Unq 63 69 68 71 60 70 59 61 64 62 66 (P)s 58 65 67 Lu Sm Gd Eu Ho Ce Tb Dy Er Pr Nd Pm Tm Yb 93 91 92 96 94 95 99 90 97 98 100 101 102 103 (P–2)f Th Lw U Np Cm Pa Pu Am Bk Cf Es Fm Md No

  41. Valence Electrons electrons in shell with highest n eg. 1s2 2s2 2p6 3s2 3p6 3d10 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 1s22s2

  42. 1A P 1 1s1 1 H 3 2s1 2 Li 11 3 3s1 Na 19 4 4s1 K 37 5 5s1 Rb 55 6s1 6 Cs 87 7s1 7 Fr

  43. 2A 4 2s2 Be 12 3s2 Mg 20 4s2 Ca 38 5s2 Sr 56 6s2 Ba 88 7s2 Ra

  44. 3A 5 2s2 2p1 B 13 3s2 3p1 Al 31 4s2 4p1 Ga 49 5s2 5p1 In 81 6s2 6p1 Tl

  45. 7A 9 2s2 2p5 F 17 3s2 3p5 Cl 35 4s2 4p5 Br 53 5s2 5p5 I 85 6s2 6p5 At

  46. 1A 8A 2 1 2A 3A 7A 6A H He 5A 4A 6 8 5 9 10 7 3 4 N C O F Ne B Li Be 11 12 18 14 15 16 17 13 Al Si Ar Na Cl P S 3B 4B 6B 8B 8B 8B 1B Mg 5B 7B 2B 19 20 21 26 22 27 24 25 28 29 30 23 32 33 36 35 31 34 K Ca Sc Fe Mn Co Ni Se Br Ti Cr Cu Ga V Kr Ge As 46 37 47 38 43 39 44 40 45 41 42 49 50 53 48 51 54 52 Ag Ru Tc Rh Cd Pd Rb In Sb Te I Sr Y Zr Sn Mo Nb Xe 55 56 57 76 78 74 75 77 72 73 82 81 83 85 86 80 84 79 Ba Cs La Os Pt Rn Ta Ir Au Hf Pb Tl Bi At W Hg Re Po 87 88 89 105 109 104 108 106 107 Fr Ra The element X has the valence shell electron configuration, ns2 np4. X belongs to what group? halcogens Zn Ac Unh Uns Uno Une Unp Unq

  47. Formation of Cations electrons lost from subshell with highest n and l first examples K 1s2 2s2 2p6 3s2 3p6 4s1 [Ar] 4s1 K+ 1s2 2s2 2p6 3s2 3p6 [Ar]

  48. Ca 1s2 2s2 2p6 3s2 3p6 4s2 [Ar] 4s2 Ca2+ 1s2 2s2 2p6 3s2 3p6 3d6 [Ar] Fe 1s2 2s2 2p6 3s2 3p6 3d6 4s2 Fe2+ 1s2 2s2 2p6 3s2 3p6 3d6 Fe3+ 1s2 2s2 2p6 3s2 3p6 3d5

  49. Formation of Anions electrons add normally eg. O 1s2 2s2 2p4 O2– 1s2 2s2 2p6 [Ne] P 1s2 2s2 2p6 3s2 3p3 P3– 1s2 2s2 2p6 3s2 3p6 [Ar]

  50. 3B 4B 6B 8B 8B 8B 1B 5B 7B 2B 21 26 22 27 24 25 28 29 30 23 Sc Fe Mn Co Ni Ti Cr Cu V 46 47 43 39 44 40 45 41 42 48 Ag Ru Tc Rh Cd Pd Y Zr Mo Nb 57 76 78 74 75 77 72 73 80 79 La Os Pt Ta Ir Au Hf W Hg Re 89 105 109 104 108 106 107 First Row Transition Metals Zn Sc [Ar] 3d1 4s2 Ti [Ar] 3d2 4s2 V [Ar] 3d3 4s2 Cr [Ar] 3d4 4s2 Mn [Ar] 3d5 4s2 Fe [Ar] 3d6 4s2 Co [Ar] 3d7 4s2 Ni [Ar] 3d8 4s2 Cu [Ar] 3d9 4s2 Zn [Ar] 3d10 4s2 Ac Unh Uns Uno Une Unp Unq

More Related