1 / 33

Denne forelesningen

This lecture covers the principles of a piezoresistive pressure sensor and its application in stress distribution analysis. Topics include the piezoresistive tensor, measurement bridge, rotation of axes, and the sensitivity of the sensor. The lecture also discusses the operation of X-ducer and transformation of stress. Additionally, it addresses the sensitivity of a Motorola MAP sensor and the modeling of a pressure membrane.

turnerkelly
Télécharger la présentation

Denne forelesningen

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Denne forelesningen • Membranbaserte piezoresistiv trykksensor (våtetset) • Stressfordelingen • Piezoresistivitets tensoren • ”Vanlig” målebro • Rotasjon til 110 akser • Overgang til ”forenklede” koeffisienter • Følsomheten til en ”vanlig” sensor • X-ducer • Virkemåte • Transformasjon av stresset • Følsomheten til en Motorola MAP sensor

  2. Piezoresistive pressure sensors

  3. 3 D kontiniumsmekanikk 2 D Plateligning eksakt FEM modellering variasjonsprinsipp stress Modellering av trykkmembran 1mm*1mm*20µm ~1018atomer (masser og fjærer)

  4. Stress (σxx) i trykkmembranen x

  5. Isotrop resistivitet d V

  6. Anisotrop resistivitet

  7. V1 V2 The resistivity changes with the mechanical stress • E - electric field, three components • j - current density, three components • 0 – homogeneous resistivity, unstressed silicon • When mechanical stress is applied, the resistivity changes depending on the stress in different directions and the piezo coefficients

  8. Silicon: Three independent piezoresistive coefficients • Example of piezoresistive coefficients: • doping: p-type • sheet resistivity: 7.8 cm • value of 11= 6.6 10-11 Pa-1 • value of 12=-1.1 10-11 Pa-1 • value of 44= 138 10-11 Pa-1 • Equations 18.3, 18.4, 18.5 in Senturia

  9. Forenklet beskrivelse • Hvis det er “bestemt” hvilken retning vi vil legge motstandene i, ønsker vi et enklere uttrykke • Transverse and longitudinal coefficients J t l The resistor axis is defined according to the direction of the current through the resistor

  10. Rotasjon • Stress er opplinjert etter sidekantene som er (110) • Piezokoeffisientene er relatert til (100) akser • Kan rotere piezo koeffisientene

  11. Resistors along <110> direction in (100) wafers • Much used direction for piezoresistors, bulk micromachining • Pre-calculated longitudinal and transverse piezo-coefficients •  positive: tensile stress •  negative: compressible stress •  positive: increased resistivity with tensile stress •  negative: decreased resistivity with tensile stress

  12. Båndstruktur og resistivitet Stor forskjell på n- og p- type silisium

  13. ”Doping” av Al

  14. p-type Si

  15. Piezoresistor placed normal to diaphragm edge • Apply pressure from above • Diaphragm bends down • Piezoresistor is stretched longitudinally • l is positive, tensile stress • Rough argument for mechanical stress in transversal direction: stress must avoid contraction: t= l • Transverse stress is tensile/positive • Change in resistance: • (t is negative) • Resistance increases p-type piezoresistor along <100> direction in (100) wafer

  16. Piezoresistor placed parallel to diaphragm edge • Apply pressure from above • Diaphragm bends down • Piezoresistor is stretched transversally • t is positive • Rough argument for mechanical stress in longitudinal direction: stress must avoid contraction: l= t • Tensile, positive stress in longitudinal dir. • Change in resistance: • (t is negative) • Resistance decreases p-type piezoresistor along <100> direction in (100) wafer

  17. Wheatstone bridge circuit

  18. n p +V- Electronics (Chapter 14.1 - 14.4) Doped resistors Define a p-type circuit in a n-type wafer n-type wafer must be at positive potential relative to the p-type circuit Reverse biased diode  no current between circuit and wafer/substrate • Alternative methods: • SOI • Surface micromachining

  19. Motstandsposisjon og lednigsføring

  20. Forventet følsomhet

  21. X-ducer • Resistor langs 100 akse • Har allerede piezo koeffisientene i dette aksesystemet [100]=1 wR LR

  22. Men vi må rotere stresset 100

  23. Forventet følsomhet

  24. Re-design

  25. Dependence of piezoresistivity on doping

  26. Pressure Measurement in MedicineExample: Hydrocephalus • abnormal accumulation of brain fluid • increased brain pressure • occurs in approximately one out of 500 births • treated by implantation of a shunt system

  27. Complex requirements for the measurement system • Small dimensions • Effective pressure transmission • No wires through the skin • No batteries • Material acceptable for MRI scans

  28. The sensor • Piezoresistive • Surface micro machined • Wheatstone bridge • two piezoresistors on diaphragm • two on substrate for temperature reasons • Absolute pressure sensor

  29. Sensor design

  30. Sensor design (polySi) (Al) polySi SiO2 Si3N4 (not to scale)

  31. Polysilicon • Silicon exists in any of three forms: • monocrystalline silicon • poly crystalline silicon, also called polysilicon or poly-Si • amorphous • The extent of regular structure varies from amorphous silicon, where the atoms do not even have their nearest neighbors in definite positions, to monocrystalline silicon with atoms organized in a perfect periodic structure.

  32. Piezoresistivity in polysilicon • The piezoresistive coefficients loose sensitivity to crystalline direction • Average over all orientations • Gauge factor of 20 – 40, about one fifth of the gauge factor of monocrystalline silicon • Gauge factor up to 70% of monosilicon has been reported • The structure; i.e. the grain size and the texture (preferred orientation of the crystallites) is decisive for the piezoresistivity • The longitudinal gauge factor is always larger than the transverse one

  33. Functionality & sensitivity

More Related