1 / 46

Advanced Functional Programming

Advanced Functional Programming. Tim Sheard Oregon Graduate Institute of Science & Technology. Lecture 18: MetaML Examples Staged Pattern Matching Staaged interpreter MetaML extensions. Synopsis MetaML features. Pattern based object code templates

tyler
Télécharger la présentation

Advanced Functional Programming

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Advanced Functional Programming • Tim Sheard • Oregon Graduate Institute of Science & Technology • Lecture 18: • MetaML Examples • Staged Pattern Matching • Staaged interpreter • MetaML extensions

  2. Synopsis MetaML features • Pattern based object code templates • templates “look like” the object language • Object-code has a type. • The type of code is embedded in the meta-lang type system • Object code has structure. • Possible to analyze it, take it apart, etc. • Automatic alpha-renaming of bound variables • No name clashes • Object-code can be run or executed (runtime code-gen.) • Object-code can be observed (pretty-printed)

  3. An example: Staged Pattern Matching • Consider an algebra of terms • Terms have constants (like 5), and operators (like +) • Patterns are like terms, Except they also include variables • datatype 'a Structure = • Op of ('a * string * 'a) (* e.g. (1 + 5) *) • | Int of int; (* e.g. 5 *) • datatype term = Wrap of term Structure; • datatype pat = • Var of string • | Term of pat Structure;

  4. Rewrite Rules • A rewrite rule is encoded as a pair of patterns • (x + y) + z --> x + (y + z) • ( Term(Op(Term (Op(Var "x","+",Var "y")), • "+", • Var "z")), • Term(Op(Var "x", • "+", • Term(Op(Var "y","+",Var "z")))) • )

  5. A rule “Compiles” into a program • with type: term -> term • (x + y) + z --> x + (y + z) • (fn Wrap a => • (case a of • Op(d,c,b) => • if "+" %= c • then (case %unWrap d of • Op(g,f,e) => • if "+" %= f • then Wrap (Op(g,"+", • Wrap (Op(e,"+",b)))) • else Wrap a • | _ => Wrap a) • else Wrap a • | _ => Wrap a))

  6. Simple but inefficient solution • (* rewrite: pat * pat -> term -> term *) • fun rewrite (lhs,rhs) term = • case match lhs emptySubst term of • NONE => term • | SOME sigma => substitute sigma rhs • Where match does a simultaneous walk over lhs and term and builds a substitution. • A substitution can either fail (NONE) or succeed (SOME sigma) with a set of bindings sigma.

  7. fun match pat msigma (term as (Wrap t)) = case (msigma) of NONE => NONE | SOME (sigma) => (case pat of Var u => (case find u sigma of NONE => SOME ((u,term) :: sigma) | SOME w => if termeq w term then SOME sigma else NONE) | Term(Int n) => (case t of Int u => if u=n then msigma else NONE | _ => NONE) | Term(Op(t11,s1,t12)) => (case t of Op (t21,s2,t22) => (if s2 = s1 then (match t11 (match t12 msigma t22) t21) else NONE) | _ => NONE)

  8. Alternate, efficient Solution • fun rewrite (lhs,rhs) term = • case match lhs emptySubst term of • NONE => term • | SOME sigma => substitute sigma rhs • (* rewrite: pat * pat -> term -> term *) • fun rewrite (lhs,rhs) term = • match2 lhs emptySubst term • (fn NONE => term • | SOME sigma => substitute sigma rhs) • Rather than returning a substitution, match is passed a continuation which expects a subsitution, and match applies the continuation to get the answer

  9. fun match2 pat msigma (term as (Wrap t)) k = case (msigma) of NONE => k NONE | SOME (sigma) => (case pat of Var u => (case find u sigma of NONE => k (SOME ((u,term) :: sigma)) | SOME w => if termeq w term then k (SOME sigma) else k NONE) | Term(Int n) => (case t of Int u => if u=n then k msigma else k NONE | _ => k NONE) | Term(Op(t11,s1,t12)) => (case t of Op (t21,s2,t22) => (if s2 = s1 then match2 t11 msigma t21 (fn sigma2 => match2 t12 sigma2 t22 k) else k NONE) | _ => k NONE));

  10. Finally: stage the result • Work with pieces of code with type term rather than terms themselves. • type substitution = • ((string * <term>) list) option; • match: pat -> substitution -> <term> -> • (substitution -> <term>) • -> <term> • rewrite:(pat * pat ) -> • <term -> term>

  11. Staged match function • fun match pat msigma term k = • case (msigma) of • NONE => k NONE • | SOME (sigma) => • (case pat of • Var u => • (case find u sigma of • NONE => k (SOME ((u,term) :: sigma)) • | SOME w => • <if termeq ~w ~term • then ~(k (SOME sigma)) • else ~(k NONE)>) • | ...

  12. Staged match (continued) • ... • | Term(Int n) => • <case ~term of • Int u => if u= ~(lift n) then ~(k msigma) • else ~(k NONE) • | _ => ~(k NONE)> • | Term(Op(p11,s1,p12)) => • <case ~term of • Op(t21,s2,t22) => • if ~(lift s1) = s2 • then ~(match p11 msigma <t21> • (fn msig => • match p12 msig <t22> k)) • else ~(k NONE) • | _ => ~(k NONE)> );

  13. Staged rewrite • (* rewrite :(pat * pat ) -> <term -> term> *) • fun rewrite (lhs,rhs) = • <fn (Wrap t) => • ~(match3 lhs (SOME []) <Wrap t> • (fn NONE => <Wrap t> • | SOME s => subst s rhs) )>;

  14. Applying the staging • “Compiling” a rule is now simply applying the staged rewrite function to a rule. • -| rewrite r3; • val it = • <(fn Wrap a => • (case a of • Op(d,c,b) => • if "+" %= c • then (case %unWrap d of • Op(g,f,e) => • if "+" %= f • then Wrap • (Op(g,"+",Wrap (Op(e,"+",b)))) • else Wrap a • | _ => Wrap a) • else Wrap a • | _ => Wrap a))> • : <term -> term >

  15. Using Metaml • MetaML can be downloaded from • http://www.cse.ogi.edu/PacSoft/projects/metaml/index.html

  16. MetaML’s extensions to ML • Staging extensions • bracket < ... >, escape ~(…), lift(…), and run(…) • Extensions to the type system • Higher order type constructors • Polymorphic components to Constructors • (limited rank2 polymorphism) • Qualified types (extensions to records) • Syntactic extensions • Monadic Do and Return • Extensible records

  17. Higher Order Type Constructors • datatype ('a,'T : * -> * ) tree = • Tip of 'a • | Node of (('a,'T)tree) 'T; • datatype 'a binary = bin of 'a * 'a; • val z: (int,list) tree = • Node [ Tip 4, Tip 2 ]; • val w: (int,binary ) tree = • Node(bin (Tip 1,Node(bin (Tip 3, Tip 0))));

  18. Polymorphic Components • datatype a = A of (['a].'a list -> 'a list); • fun copy [] = [] • | copy (x::xs) = x :: (copy xs); • val a1 = A(rev); • val a2 = A copy; • -| fun f x y (A g) = (g x, g y); • val f = Fn : ['a,'b].'b list -> 'a list -> a • -> ('b list * 'a list ) • -| val q = f [1,2,3] ["x","y","d"] a1; • val q = ([3,2,1],["d","y","x"]) : • (int list * string list )

  19. List Monoid example • datatype list_monoid = LM of • { inject : ['a].'a -> 'a list, • plus : ['a]. 'a list -> 'a list -> 'a list, • zero : ['a].'a list • }; • val lm1 = LM{inject = fn x => [x], • plus = fn x => fn y => x@y, • zero = []}

  20. Pattern Matching to access • fun f (LM{inject=inj, plus = sum, zero = z}) = • (sum z (inj 2), • sum (inj true) (inj false)); • -| f lm1; • val it = ([2],[true ,false ]) : • (int list * bool list )

  21. Monads • A Monad is • A type constructor T • a type to type function • and 2 polymorphic functions • unit : ‘a -> ‘a T • bind: (‘a T) -> (‘a -> ‘b T) -> (‘b T) • an expression with type ‘a T is a computation • returns a value of type ‘a • might perform a T action

  22. The standard morphisms • Unit : creates a simple (nullary) action which does nothing • Bind: sequences two actions • Non-standard morphisms describe the actions of the monad

  23. Monads in MetaML • Uses both HHTC and local polymorphism • datatype ('m : * -> * ) monad = • Mon of • (['a]. 'a -> 'a 'm) * • (['a,'b]. ('a 'm) -> ('a -> 'b 'm) -> 'b 'm); • type 'x Id = 'x; • val Id = (Mon (fn x => x, fn x => fn f => f x)) • : Id Monad;

  24. Do and Return • MetaML’s interface to the standard morphisms unit and bind • val ex = • let fun bind (SOME x) f = f x • | bind NONE f = NONE • in (Mon(SOME,bind)) : option Monad end; • fun option f x = • Do ex • { z <- x • ; Return ex (f z) • }; • vs • fun option f x = bind x (fn z => unit (f z));

  25. Syntactic Sugar • Do (Mon(unit,bind)) { x <- e; f } • = • bind e (fn x => f) • Return (Mon(unit,bind)) e • = • unit e • Do m { x1 <- e1; x2 <- e2 ; x3 <- e3 ; e4 } • = • Do m { x1 <- e1; • Do m { x2 <- e2 ; • Do m { x3 <- e3 ; e4 }}}

  26. State Transformer Monad • datatype 'a intSt = C of (int -> ('a * int)); • val intSt = • let fun unit x = C(fn n => (x,n)) • fun bind (C x) f = • C (fn n => let val (a,n1) = x n • val (C g) = f a • in g n1 end) • in (Mon(unit,bind)) end; • Note how the state is threaded in and out of each computation.

  27. Using staging to write a compiler • We will write a compiler using the following process. • 1 - Create a denotational semantics for the language • 2 - Express the semantics in terms of a monad • 3 - Express the “actions” of the compiler as non-standard morphisms of the monad. • 4 - Stage the monadic interpretor

  28. The While-language • datatype Exp = • Constant of int (* 5 *) • | Variable of string (* x *) • | Minus of (Exp * Exp) (* x - 5 *) • | Greater of (Exp * Exp) (* x > 1 *) • | Times of (Exp * Exp) ; (* x * 4 *) • datatype Com = • Assign of (string * Exp) (* x := 1 *) • | Seq of (Com * Com) (* { x := 1; y := 2 } *) • | Cond of (Exp * Com * Com) (* if x then x := 1 else y := 1 *) • | While of (Exp * Com) (* while x>0 do x := x - 1 *) • | Declare of • (string * Exp * Com) (* declare x = 1 in x := x - 1 *) • | Print of Exp; (* print x *)

  29. Semantics of While-language • Exp - an environment to value function • an environment is mapping from variables to values • Var - reads the store • Com - a function that given an environment produces a new environment and also produces output • Declare - increase the size of the environment - environment behaves like a stack! • Assign - change the environment • Print - add something to the output - output behaves like a stream

  30. 1 stage meaning • type variable = string; • type value = int; • type output = string • type env = variable -> value; • eval : Exp -> env -> value • interp : Com -> env -> (env * output)

  31. 2 stage meaning • Divide the environment into 2 pieces • static part (known at compile-time) • type location = int; • type index = variable list; • (* position in list encodes where variable lives in the stack *) • dynamic part (known at run-time) • type value = int • type stack = value list; • Meaning • eval : Exp -> index -> (stack -> value) • interp : Com -> index -> stack -> (stack * output)

  32. Creating a Monad • Note the dynamic meanings of Exp and Com • eval : Exp -> index ->(stack -> value) • interp : Com -> index ->stack -> (stack * output) • Abstract over both these with the following • datatype ‘a M = • StOut of (stack -> (‘a * stack * output)); • eval : Exp -> index -> value M • interp: Com -> index -> unit M • Note that M is the type constructor of a monad.

  33. Monad of state with output • datatype 'a M = • StOut of (int list -> ('a * int list * string)); • fun unStOut (StOut f) = f; • fun unit x = StOut(fn n => (x,n,"")); • fun bind (e : ‘a M) (f : ‘a -> ‘b M) = • StOut(fn n => • let val (a,n1,s1) = (unStOut e) n • val (b,n2,s2) = unStOut(f a) n1 • in (b,n2,s1 ^ s2) end); • val mswo : M Monad = Mon(unit,bind);

  34. Actions in the Monad • (* read : location -> int M *) • fun read i = StOut(fn ns => (fetch i ns,ns,"")); • (* write : location -> int -> unit M *) • fun write i v = StOut(fn ns =>( (), put i v ns, "" )); • (* push: int -> unit M *) • fun push x = StOut(fn ns => ( (), x :: ns, "")); • (* pop : unit M *) • val pop = StOut(fn (n::ns) => ((), ns, "")); • (* output: int -> unit M *) • fun output n = StOut(fn ns =>((),ns, (toString n)^" "));

  35. Example translation • read : location -> int M • write : location -> int -> unit M • push: int -> unit M • pop : unit M • output: int -> unit M • declare x = 5 in print (x+x) • do M { push 5 • ; x <- read xloc • ; y <- Return M (x + x) • ; output y • ; pop • }

  36. Monadic eval • fun eval1 exp index = (* eval1: Exp -> index -> int M *) • case exp of • Constant n => Return mswo n • | Variable x => let val loc = position x index • in read loc end • | Minus(x,y) => Do mswo { a <- eval1 x index ; • b <- eval1 y index; • Return mswo (a - b) } • | Greater(x,y) => Do mswo { a <- eval1 x index ; • b <- eval1 y index; • Return mswo (if a '>' b then 1 else 0) } • | Times(x,y) => Do mswo { a <- eval1 x index ; • b <- eval1 y index; • Return mswo (a * b) };

  37. Monadic interp • (* interp1 : Com -> index -> unit M *) • fun interp1 stmt index = • case stmt of • Assign(name,e) => • let val loc = position name index • in Do mswo { v <- eval1 e index ; write loc v } end • | Seq(s1,s2) => • Do mswo { x <- interp1 s1 index; • y <- interp1 s2 index; • Return mswo () } • | Cond(e,s1,s2) => • Do mswo { x <- eval1 e index; • if x=1 • then interp1 s1 index • else interp1 s2 index }

  38. Monadic interp (cont.) • | While(e,body) => • let fun loop () = • Do mswo { v <- eval1 e index ; • if v=0 then Return mswo () • else Do mswo • { interp1 body index ; • loop () } } • in loop () end • | Declare(nm,e,stmt) => • Do mswo { v <- eval1 e index ; • push v ; • interp1 stmt (nm::index); • pop } • | Print e => • Do mswo { v <- eval1 e index; output v };

  39. 2-stage Monadic eval • fun eval2 exp index = (* eval2: Exp -> index -> <int M> *) • case exp of • Constant n => <Return mswo ~(lift n)> • | Variable x => let val loc = position x index • in <read ~(lift loc)> end • | Minus(x,y) => <Do mswo { a <- ~(eval2 x index) ; • b <- ~(eval2 y index); • Return mswo (a - b) }> • | Greater(x,y) => • <Do mswo { a <- ~(eval2 x index) ; • b <- ~(eval2 y index); • Return mswo (if a '>' b then 1 else 0) }> • | Times(x,y) => <Do mswo { a <- ~(eval2 x index) ; • b <- ~(eval2 y index) ; • Return mswo (a * b) }> ;

  40. 2-stage Monadic interp • (* interpret2 : Com -> index -> <unit M> *) • fun interpret2 stmt index = • case stmt of • Assign(name,e) => • let val loc = position name index • in <Do mswo { n <- ~(eval2 e index) ; • write ~(lift loc) n }> end • | Seq(s1,s2) => <Do mswo { x <- ~(interpret2 s1 index); • y <- ~(interpret2 s2 index); • Return mswo () }> • | Cond(e,s1,s2) => • <Do mswo { x <- ~(eval2 e index); • if x=1 then ~(interpret2 s1 index) • else ~(interpret2 s2 index)}>

  41. 2-stage interp (cont.) • | While(e,body) => • <let fun loop () = • Do mswo { v <- ~(eval2 e index); • if v=0 then Return mswo () • else Do mswo { q <- ~(interpret2 body index); • loop ()} • } • in loop () end> • | Declare(nm,e,stmt) => • <Do mswo { x <- ~(eval2 e index) ; • push x ; • ~(interpret2 stmt (nm::index)) ; • pop }> • | Print e => <Do mswo { x <- ~(eval2 e index) ; • output x }>;

  42. declare x = 10 in { x := x - 1; print x } • <Do %mswo • { %push 10 • ; a <- %read 1 • ; b <- Return %mswo a %- 1 • ; c <- %write 1 b • ; d <- %read 1 • ; e <- %output d • ; Return %mswo () • ; %pop • }>

  43. Analyzing code • Matching against code • -| fun is5 <5> = true • | is5 _ = false; • val is5 = fn : <int> -> bool • -| is5 (lift (1+4)); • val it = true : bool • -| is5 <0>; • val it = false : bool

  44. Variables in code patterns • -| fun parts < ~x + ~y > = SOME(x,y) | parts _ = NONE; • val parts = fn : <int> -> (<int> * <int>) option • -| parts <6 + 7>; • val it = SOME (<6>,<7>) : (<int> * <int>) option • -| parts <2>; • val it = NONE : (<int> * <int>) option

  45. Higher-order code variables • Esc in pattterns under a lambda need to be higher-order variables. • -| fun f <fn x => ~(g <x>) + 0> = <fn y => ~(g <y>)> • | f x = x; • val f = Fn : ['b].<'b -> int> -> <'b -> int> • -| f <fn x => (x-4) + 0>; • val it = <(fn a => a %- 4)> : <int -> int>

  46. Rules for higher-order variables • The escaped expression must me an application • The application must have a variable as the function part. This variable is the the higher-order variable • The arguments to the application must be bracketed variables which are bound in enclosing lambda expresions. • All lambda bound variables must appear. • Examples: • <fn x => ~(f <x>)> legal • <fn x => ~(f <2>)>illegal • <fn x => ~f > illegal • <fn x => fn y => ~(f <x>)>illegal • <fn (x,y) => ~(f <x> <y>)>legal

More Related