Download
travelling wave ion mobility studies of polymer microstructure n.
Skip this Video
Loading SlideShow in 5 Seconds..
Travelling Wave Ion Mobility Studies of Polymer Microstructure PowerPoint Presentation
Download Presentation
Travelling Wave Ion Mobility Studies of Polymer Microstructure

Travelling Wave Ion Mobility Studies of Polymer Microstructure

205 Views Download Presentation
Download Presentation

Travelling Wave Ion Mobility Studies of Polymer Microstructure

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Travelling Wave Ion Mobility Studies of Polymer Microstructure Jim Scrivens

  2. Challenges in characterising polymer formulations • Extremely complex mixtures • Variation of starting materials • Poorly controlled reactions • Molecular weight range • Sold on properties not structure • Chromatographic separation difficult

  3. Requirement • Rapid analysis • High information content • Molecular weight and structural information • Ability to differentiate small differences in complex formulations

  4. Ion mobility platforms • Drift cell • Currently predominately academic based • Differential mobility spectroscopy (DMS) • Includes FAIMS • Theory challenging • Travelling wave • Commercially available • Theory challenging

  5. Ion mobility issues • Sensitivity • Speed • Selectivity • Ease of use • Resolution • Availability • Information content • Reproducibility • Calibration • Cost • Data analysis

  6. References • Ion mobility–mass spectrometry • Abu B. Kanu, Prabha Dwivedi, Maggie Tam, Laura Matz and Herbert H. Hill Jr. • J. Mass Spectrom. 2008; 43: 1–22 • Differential Ion Mobility Spectrometry: Nonlinear Ion Transport And Fundamentals Of FAIMS • Alexandre A Shvartsburg • CRC Press, ISBN:  9781420051063, 2008

  7. Travelling Wave References • An investigation of the mobility separation of some peptide and protein ions using a new hybrid quadrupole/travelling wave IMS/oa-ToF instrument • Steven D. Pringle , Kevin Giles , Jason L. Wildgoose, Jonathan P. Williams , Susan E. Slade , Konstantinos Thalassinos , Robert H. Bateman , Michael T. Bowers and James H. Scrivens • International Journal of Mass Spectrometry, 261, 1-12, 2007 • Applications of Travelling Wave Ion Mobility-Mass Spectrometry • Konstantinos Thalassinos and James H Scrivens • Practical Aspects of Trapped Ion Mass Spectrometry Volume 5, 2009 • Special issue of IJMS on Ion Mobility • Edited by Richard Yost, James Scrivens • IJMS, 2010

  8. Schematic of Synapt G1 Pringle, S. D. et al., International Journal of Mass Spectrometry, 261, 1-12, 2007 Thalassinos K and Scrivens J H, “Applications of Travelling Wave Ion Mobility-Mass Spectrometry”, Practical Aspects of Trapped Ion Mass Spectrometry Volume 5

  9. Features of Synapt • Ease of use • Rapid analysis (typically 200 spectra in 18ms) • High sensitivity (fmole) • Can acquire MS, MS/MS with accurate mass data • Estimated relative cross-sections can be obtained by use of calibration against known standards

  10. Aspirations • Higher mobility resolution • Better dynamic range • Higher resolution mass spectrometry • No compromise in: - • Sensitivity • Speed • Ease of use

  11. Schematic of Synapt G2

  12. TOF developments • QuanTof improvements • High field pusher • Dual stage reflectron • Hybrid ion detection system • compatible with UPLC separations • compatible with HDMS analysis • Performance • Resolution – over 40,000 FWHM • Mass Measurement – 1ppm RMS • Dynamic Range – up to 105 • Speed - 20 Spectra/sec

  13. Mobility Cell improvements • Second generation Triwave device • Increased ion mobility resolution (over 40 Ω/ΔΩ) • IMS cell 40% longer • Higher gas pressure in IMS T-Wave (2.5mb versus 0.5mb) • Modified T-Wave pattern - use ofHigher T-Wave pulse amplitudes/fields • Helium cell balances N2 pressure inMaximizes transmission of ions on entry into the mobility cell

  14. Rabbit haemoglobin peptide Synapt G1 m/z 1134 m/z 1037 m/z 857 m/z 977

  15. Rabbit haemoglobin peptide Synapt G2 m/z 1134 m/z 1037 m/z 857 m/z 977

  16. Rabbit haemoglobin peptide ATD comparison m/z 1134 Synapt G2 m/z 1037 m/z 857 m/z 977

  17. Positive ion [M+Na]+ ESI mass spectrum of N-glycans released from chicken ovalbumin

  18. Ion mobility separations of positive ions [M+Na]+ of N-glycans released from chicken ovalbumin with compositions of Hex3GlcNAc2 Hex3GlcNAc3 (two isomers) and Hex3GlcNAc4

  19. Ion mobility separations of positive ions [M+Na]+ of N-glycans released from chicken ovalbumin with compositions of Hex3GlcNAc2 Hex3GlcNAc3 (two isomers) and Hex3GlcNAc4

  20. Positive ion [M+Na]+ ion mobility MS/MS spectra of the first and second N-glycan isomers of m/z 1136 from chicken ovalbumin

  21. EESI of aerosol formulations

  22. Carbomethoxypyridines

  23. Mobility separation of isomers

  24. ATD for isomers

  25. Isobaric PEG systems • Oligomers of di-hydroxyl end-capped PEG & PEG monooleate have same nominal mass-to-charge ratio • Different number of moles of ethylene oxide (EO) • Resolution required to separate oligomers is ~6300 • Difference in m/z for two oligomers is 0.0880 • m/z 553.3411 • m/z 553.4292

  26. Synapt G1 mobility separation – m/z 553 [M+Li]+ [M+Li]+ Hilton G. R., et al,. Anal. Chem., 2008, 80 (24), 9720-9725

  27. Synapt G1 mobility separation – m/z 861 [M+Li]+ [M+Li]+ Hilton G. R., et al,. Anal. Chem., 2008, 80 (24), 9720-9725

  28. Synapt G2: Ion mobility separation – m/z 1126 [M+Li]+ [M+Li]+ Precursor ion resolution 8434

  29. Driftscope separation G2 PEG 1000 PEG mono oleate

  30. Synthesis of Tween 20 - H2O - H2O + Sorbitol Sorbitan • Isosorbide [C2H4O]nO +

  31. Structures of Tween formulations

  32. Structures of major products Isosorbidepolyethoxylate [SPE] Sorbitanpolyethoxylate [SPE] Polysorbate monoester [PME]

  33. Tween20 overall averaged spectrum

  34. Major species Tween 20 Series 1 686.4 + n*22 Li2 [2+] R = C11H23 [laurate] 686*2 = 1372 1372 – 14 [Li2] = 1358 1358 – 164 [sorbitan] = 1194 1194 – 182 [RCOOH – H2O] = 1012 1012/44 [CH2CH2O] = 23 W + X + Y + Z = 23 Polysorbate monoester [PME]

  35. Major species Tween 20 Series 2 573.3 + n*22 Li2 [2+] 573*2 = 1146 1146 – 14 [Li2] = 1132 1132 – 164 [sorbitan] = 968 968/44 [CH2CH2O] = 22 W + X + Y + Z = 22 Sorbitanpolyethoxylate [SPE]

  36. Major species Tween 20 Series 3 322 + n*22 Li2 [2+] 322*2 = 644 644 – 14 [Li2] = 630 630 – 146 [isosorbide] = 484 484/44 [CH2CH2O] = 11 P + M = 11 Isosorbidepolyethoxylate [SPE]

  37. Tween 20 mobility separation

  38. Tween 20 mobility separation

  39. Tween 20 mobility separation

  40. Tween20 MALDI spectrum Sorbitanpolyethoxylate [SPE] Isosorbidepolyethoxylate [SPE] Polysorbate monoester [PME] Folahan O Ayorindeet al Rapid Comm. Mass Spectrom, 14, 2116, (2000)

  41. Tween 40 overall averaged spectrum

  42. Major series Tween 40 Series 1 670.4 + n*22 Li2 [2+] R = C15H31 [palmitate] 670*2 = 1340 1340 – 14 [Li2] = 1326 1326 – 164 [sorbitan] = 1162 1162 – 238 [RCOOH – H2O] = 924 924/44 [CH2CH2O] = 21 W + X + Y + Z = 21 Polysorbate monoester [PME]

  43. Major series Tween 40 Series 2 573.3 + n*22 Li2 [2+] 573*2 = 1146 1146 – 14 [Li2] = 1132 1132 – 164 [sorbitan] = 968 968/44 [CH2CH2O] = 22 W + X + Y + Z = 22 Sorbitanpolyethoxylate [SPE]

  44. Major series Tween 40 Series 3 322 + n*22 Li2 [2+] 322*2 = 644 644 – 14 [Li2] = 630 630 – 146 [isosorbide] = 484 484/44 [CH2CH2O] = 11 P + M = 11 Isosorbidepolyethoxylate [SPE]

  45. Tween 40 mobility separation

  46. Tween 40 mobility separation

  47. Tween 40 extracted regions A B

  48. Tween 40 conformational families A Polysorbate monoester [PME] B Sorbitanpolyethoxylate [SPE]

  49. Tween 40 extracted regions c a b

  50. Tween 40 conformational families a Polysorbate monoester [PME] Polyisosorbide monoester [PME] b c