1 / 38

非最小超对称唯象研究: 工作汇报

非最小超对称唯象研究: 工作汇报. 杨 金 民. 中科院 理论物理所. 2009.9.25 南开大学. MSSM. 超对称. arXiv: 0 810.0989 (Cao, Yang)  . nMSSM. NMSSM. arXiv: 0901.1437 (Cao, Logan, Yang) . arXiv: 0901.3818 (Wang, Xiong, Yang). arXiv: 0908.0486  (Wang, Xiong, Yang, Yu).

ulema
Télécharger la présentation

非最小超对称唯象研究: 工作汇报

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 非最小超对称唯象研究:工作汇报 杨 金 民 中科院 理论物理所 2009.9.25 南开大学

  2. MSSM 超对称 arXiv: 0810.0989 (Cao, Yang)   nMSSM NMSSM arXiv: 0901.1437 (Cao, Logan, Yang)  arXiv: 0901.3818 (Wang, Xiong, Yang) arXiv: 0908.0486  (Wang, Xiong, Yang, Yu) arXiv: 0801.1169 (Heng, Oakes, Wang, Xiong, Yang) 

  3. 目录 1. 模型介绍: MSSM,NMSSM,nMSSM 2. 唯象研究 2.1 目前的实验限制 2.2 可允许的参数空间 2.3 Zbb 反常 2.4 B-介子的双轻衰变 2.5 超对称粒子的残留效应 2.6 解释暗物质Pamela 3、结论

  4. 1. 模型 Fine-Tuning GUT Dark Matter 超对称 Electroweak Baryogenesis Inflation Affleck-Dine Baryogenesis

  5. R-conserving SUSY Models MSSM, CMSSM (mSUGRA, GMSB, AMSB) NMSSM,nMSSM Split-SUSY · · · • R-violating SUSY Models

  6. MSSM NMSSM, nMSSM CMSSM -problem little hierarchy

  7. -problem in MSSM: dimensionful parameter conserving SUSY should be at Planck scale or 0 chargino is too light =0 only one Higgs-doublet gets vev

  8. little hierarchy in MSSM: • Experimental lower bound need sizable loop effects ! mh  114 GeV (95 GeV) • Theoretical upper bound mh  90GeV (tree-level) ~ 500 GeV  135GeV (loop-level) 100 GeV

  9. NMSSM, nMSSM: • Dynamical solution to -problem • Solve little hierarchy problem Field Content: MSSM + singlet no dimensionful parameter (NMSSM) SUSY-conserving part: naturally small dimensionful parameter (nMSSM) 特点 SUSY breaking ( < TeV ) dimensionful soft parameters (TeV) SUSY-breaking part: trigger EWSB ( < TeV ) generate -term ( < TeV )

  10. motivated from top-down view ? E6 models (superstring-inspired) string scale SO(10)  U(1)  … at low energy: S, Hu,Hd+ heavy particles U(1) global PQ cubic term (NMSSM) to break U(1) PQ tadpole (nMSSM)

  11. NMSSM 超势: U(1)B: Q(1/3), U(-1/3), D(-1/3), L(0), E(0), Hu(0), Hd(0), S(0) U(1)L: Q(0), U(0), D(0), L(1), E(-1), Hu(0), Hd(0), S(0) U(1)R: Q(1), U(1), D(1), L(1), E(1), Hu(1), Hd(1), S(1), W(3) 0 U(1)PQ: Q(-1), U(0), D(0), L(-1), E(0), Hu(1), Hd(1), S(-2) 标势: U(1)R Z3 (non-R) U(1)R ( A0, A0 ):PGB

  12. NMSSM domain wall: Z3 ( X ei2/3X ) 自发破却 domain wall must disappear before BBN 要求 Z3-breaking term in Veff • impose discrete R-symmetry on W • 引入high-order non-renormalizable operator to W multi-loop large enough to break Z3 too small to upset gauge hierarchy

  13. nMSSM 超势: U(1)B: Q(1/3), U(-1/3), D(-1/3), L(0), E(0), Hu(0), Hd(0), S(0) U(1)L: Q(0), U(0), D(0), L(1), E(-1), Hu(0), Hd(0), S(0) U(1)R: Q(1), U(1), D(1), L(1), E(1), Hu(0), Hd(0), S(2), W(2)  0 U(1)PQ: Q(-1), U(0), D(0), L(-1), E(0), Hu(1), Hd(1), S(-2) U(1)R Z2 matter parity

  14. Spectrum of NMSSM/nMSSM: One more CP-odd Higgs (A1or a) + MSSM One more CP-even Higgs One more neutralino

  15. How tosolve -problem? V • Before SUSY breaking SUSY vacuum: Vmin = 0 〈 〉 = 0  EW not broken; no  term • With SUSY breaking (TeV) dimensionful soft parameters (TeV) V non-SUSY vacuum: Vmin < 0 〈 〉  0 SUSY breaking ( < TeV )  trigger EWSB ( < TeV ) generate -term ( < TeV )

  16. How to solve little hierarchy? • mh theoretical upper bound MSSM: NMSSM: • mh experimental lower bound suppressed ! has singlet component suppressed !

  17. 2.唯象研究 2.1 实验限制 (1) direct bounds: • LEP I • LEP II • Tevatron • LEP II

  18. V (2) Stability of Higgs Potential true (physical) vaccum  local vaccum (3) Cosmic Dark Matter (WMAP)

  19. (4) Precision Electroweak Data 1 ,2 ,3 (S, T, U) • Rb • = (Zbb)/  (Zhadrons) SUSY

  20. (6)  反常磁矩 a   

  21. Under all above constraints • scan over parameter space • to find out the allowed part • display the allowed part • predict FCNC B-decay • can solve Zbb anomaly ? • residual SUSY effects • explain Pamela ?

  22. 2.2 可存活的参数空间 NMSSM 暗物质 黑格斯

  23. nMSSM 黑格斯衰变 暗物质

  24. 2.3 Zbb anomaly

  25. 2.4 FCNC B -Decays SUSY SUSY

  26. expt data no expt data

  27. NMSSM Sky-blue points excluded by

  28. NMSSM Sky-blue points excluded by

  29. 2.5 超对称粒子的残留效应 重的 sparticles 会在轻的 Higgs部分 有大的残留效应

  30. NMSSM

  31. 2.6 解释Pamela --Pamela+Relic density via Sommerfeld Enhance NMSSM nMSSM No! • LSP mass in a narrow range • No light particles to give SE GMSSM: general singlet extension of MSSM OK !

  32. General singlet extension of MSSM:

  33. Relic Density  • DM Annihilation  h, a  • Large Sommerfeld Enhancement Induced by h   Pamela  Hooper, Tait 0906.0362

  34. Implication on SM-like Higgs Pheno:

  35. 3. 结论 • is well motivated: • can account for all current expt data: Precision Electroweak Data; Rb  g-2 FCNC B-decays Dark Matter Relic Density Pamela ? . . . . . . . . . except: Zbb anomaly LHC Super B-factory 暗物质实验 检验模型

More Related