1 / 59

ELEN E4810: Digital Signal Processing Topic 3: Fourier domain

ELEN E4810: Digital Signal Processing Topic 3: Fourier domain. The Fourier domain Discrete-Time Fourier Transform (DTFT) Discrete Fourier Transform (DFT) Convolution with the DFT. 1. The Fourier Transform.

umay
Télécharger la présentation

ELEN E4810: Digital Signal Processing Topic 3: Fourier domain

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ELEN E4810: Digital Signal ProcessingTopic 3: Fourier domain • The Fourier domain • Discrete-Time Fourier Transform (DTFT) • Discrete Fourier Transform (DFT) • Convolution with the DFT Dan Ellis

  2. 1. The Fourier Transform • Basic observation (continuous time):A periodic signal can be decomposed into sinusoids at integer multiples of the fundamental frequency • i.e. if we can approach with Harmonics of the fundamental Dan Ellis

  3. Fourier Series • For a square wave, i.e. Dan Ellis

  4. fk π ak 1.0 k 1 2 3 4 5 6 7 k 1 2 3 4 5 6 7 Fourier domain • xis equivalently described by its Fourier Series parameters: • Complex form: Negative ak is equivalent to phase of p Dan Ellis

  5. Fourier analysis • How to find {|ck|}, {arg[ck]}?Inner product with complex sinusoids: Dan Ellis

  6. Fourier analysis  • Works if k1, k2 are positive integers, Dan Ellis

  7. sinc • = 1 when x = 0= 0 when x = r·p, r ≠ 0, r = ±1, ±2, ±3,... Dan Ellis

  8. Fourier Analysis • Thus,because real & imag sinusoids in pick out corresponding sinusoidal components linearly combined in Dan Ellis

  9. Fourier Transform • Fourier series for periodic signals extends naturally to Fourier Transform for any (CT) signal (not just periodic): • Discrete index kcontinuous freq. W FourierTransform (FT) Inverse FourierTransform (IFT) Dan Ellis

  10. Fourier Transform • Mapping between two continuous functions: 2π ambiguity Dan Ellis

  11. d(x-x0) f(x) x x0 Fourier Transform of a sine • Assume Now, since ...we know ...where d(x) is the Dirac delta function (continuous time) i.e. •   Dan Ellis

  12. Fourier Transforms ~ ~ Dan Ellis

  13. 2. Discrete Time FT (DTFT) • FT defined for discrete sequences: • Summation (not integral) • Discrete (normalized) frequency variable w • Argument is ejw, not plain w DTFT Dan Ellis

  14. n -1 1 2 3 4 5 6 7 DTFT example • e.g. x[n] = an·m[n], |a| < 1  Dan Ellis

  15. Periodicity of X(ejw) • X(ejw) has periodicity 2p in w : • Phase ambiguity of ejwmakes it implicit Dan Ellis

  16. Inverse DTFT (IDTFT) • Same basic form as other IFTs: • Note: continuous, periodic X(ejw) discrete, infinite x[n] ... • IDTFT is actually forward Fourier Series (except for sign of w) IDTFT Dan Ellis

  17. IDTFT • Verify by substituting in DTFT: = 0 unlessn = l Dan Ellis

  18. sinc again • Same as cos imag jsin part cancels  Dan Ellis

  19. n w -3 -2 -1 1 2 3 -p p DTFTs of simple sequences • x[n] = d[n] • i.e. x[n] X(ejw) d[n]  1 (for all w) x[n] X(ejw) Dan Ellis

  20.  DTFTs of simple sequences IDTFT • :  over -p < w < p but X(ejw) must be periodic in w • If w0 = 0 then x[n] = 1n so Dan Ellis

  21.  DTFTs of simple sequences • From before: • m[n]tricky - not finite ( |a| < 1) DTFT of 1/2 Dan Ellis

  22. DTFT properties • Linear: • Time shift: • Frequency shift: ‘delay’in frequency Dan Ellis

  23. DTFT example • x[n] = d[n] + anm[n-1] ? = d[n] + a(an-1m[n-1])   x[n] = anm[n] Dan Ellis

  24. DTFT symmetry • If x[n]  X(ejw)then... x[-n]  X(e-jw) x*[n]  X*(e-jw) Re{x[n]}  XCS(ejw) jIm{x[n]}  XCA(ejw) xcs[n]  Re{X(ejw)} xca[n]  jIm{X(ejw)} from summation (e-jw)* = ejw conjugate symmetry cancels Im parts on IDTFT Dan Ellis

  25. DTFT of real x[n] • When x[n]is pure real, X(ejw) = X*(e-jw) xcs[n]  xev[n] = xev[-n]  XR(ejw) = XR(e-jw) xca[n]  xod[n] = -xod[-n]  XI(ejw) = -XI(e-jw) x[n] real, evenX(ejw) even, real Dan Ellis

  26. DTFT and convolution • Convolution:  Convolutionbecomesmultiplication Dan Ellis

  27. DTFT modulation • Modulation:Could solve if g[n]was just sinusoids...  Dualof convolution in time Dan Ellis

  28. Parseval’s relation • “Energy” in time and frequency domains are equal: • If g = h, theng·g* = |g|2 = energy... Dan Ellis

  29. Energy density spectrum • Energy of sequence • By Parseval • Define Energy Density Spectrum (EDS) Dan Ellis

  30. EDS and autocorrelation • Autocorrelation of g[n]:  • If g[n] is real, G(e-jw) = G*(ejw), so • Mag-sq of spectrum is DTFT of autoco no phaseinfo. Dan Ellis

  31. Convolution with DTFT • Since we can calculate a convolution by: • finding DTFTs of g, hG, H • multiply them: G·H • IDTFT of product is result, g[n] DTFT y[n] IDTFT h[n] DTFT Dan Ellis

  32. DTFT convolution example • x[n] = an·m[n] • h[n] = d[n] - ad[n-1]  • y[n] = x[n] *h[n]   y[n] = d[n] i.e. ... Dan Ellis

  33. 3. Discrete FT (DFT) • A finite or periodic sequence has only N unique values, x[n] for0 ≤ n < N • Spectrum is completely defined by N distinct frequency samples • Divide 0..2p into N equal steps, {wk} = 2pk/N Dan Ellis

  34. DFT and IDFT • Uniform sampling of DTFT spectrum: • DFT: where i.e. 1/Nth of a revolution Dan Ellis

  35. im WN2 re WN IDFT • Inverse DFT IDFT • Check: Sum of complete setof rotated vectors= 0 if l ≠ n; = N if l = n Dan Ellis

  36. DFT examples • Finite impulse  • Periodic sinusoid: (r I)  Dan Ellis

  37. DFT: Matrix form • as a matrix multiply: • i.e. Dan Ellis

  38. Matrix IDFT • If then • i.e. inverse DFT is also just a matrix, =1/NDN* Dan Ellis

  39. X[k] X(ejw) w k=1... DFT and DTFT • DFT ‘samples’ DTFT at discrete freqs: • continuous freq w• infinite x[n], -<n< DTFT • discrete freq k=Nw/2p• finite x[n], 0≤n<N DFT Dan Ellis

  40. DFT and MATLAB • MATLAB is concerned with sequences not continuous functions like X(ejw) • Instead, we use the DFT to sample X(ejw)on an (arbitrarily-fine) grid: • X = freqz(x,1,w);samples the DTFT of sequence x at angular frequencies in w • X = fft(x);calculates the N-point DFT of an N-point sequence x M Dan Ellis

  41. DTFT from DFT • N-point DFT completely specifies the continuous DTFT of the finite sequence “periodicsinc” interpolation Dan Ellis

  42. Periodic sinc • = N when Dwk = 0; = (-)Nwhen Dwk/2 = p= 0 when Dwk/2 = r·p/N, r = ±1, ± 2, ...other values in-between... Dan Ellis

  43. Periodic sinc Periodicsincinterpolation X[k]X(ejw) Dan Ellis

  44. DFT from overlength DTFT • If x[n] has more than N points, can still form • IDFT of X[k]will give N point • How does relate to x[n] ? Dan Ellis

  45. DTFT sample IDFT x[n] X(ejw) X[k] -A ≤ n < B 0 ≤ n < N DFT from overlength DTFT =1 forn-l = rN, rI= 0 otherwise all values shifted by exact multiples of N ptsto lie in 0 ≤ n < N Dan Ellis

  46. DFT from DTFT example • If x[n] = { 8, 5, 4, 3, 2, 2, 1, 1} (8 point) • We form X[k] for k = 0, 1, 2, 3by sampling X(ejw) at w = 0, p/2, p, 3p/2 • IDFT of X[k] gives 4 pt • Overlap only forr = -1: (N = 4) Dan Ellis

  47. DFT from DTFT example • x[n] • x[n+N] (r = -1) • is the time aliased or ‘folded down’ version of x[n]. n -1 1 2 3 4 5 6 7 8 n -5 -4 -3 -2 -1 1 2 3 4 5 n 1 2 3 Dan Ellis

  48. Properties: Circular time shift • DFT properties mirror DTFT, with twists: • Time shift must stay within N-pt ‘window’ • Modulo-N indexing keeps index between 0 and N-1: 0 ≤ n0 < N Dan Ellis

  49. g[n] g[<n-2>5] n n 1 2 3 4 1 2 3 4 Circular time shift • Points shifted out to the right don’t disappear – they come in from the left • Like a ‘barrel shifter’: ‘delay’ by 2 5-pt sequence Dan Ellis

  50. n -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10 11 n -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10 11 Circular time reversal • Time reversal is tricky in ‘modulo-N’ indexing - not reversing the sequence: • Zero point stays fixed; remainder flips 5-pt sequence made periodic Time-reversedperiodic sequence Dan Ellis

More Related