890 likes | 1.01k Vues
Dive into the effects of inequality on emigration incentives in Israel. Explore data, models, and predictions to understand the Brain Drain phenomenon in the country.
E N D
When is “Too Much” Inequality Not Enough? The Selection of Israeli Emigrants Eric D. Gould Hebrew University Omer Moav Royal Holloway and Hebrew University
(Only) Two Things Israelis Agree Upon • There is “too much” inequality in Israel. • Israel suffers from a “Brain Drain.”
“Too Much” Inequality in Israel • Israel Social Security Agency • Every 6 months: “poverty report” • Brandolini and Smeeding (2008) • Among 24 high income countries, only the US has a higher 90-10 ratio in disposable personal income.
“Too Much” Inequality in Israel Source: Brandolini and Smeeding (2008)
The Brain Drain from Israel • Gould and Moav (2007): emigration rates increase with education levels.
The Brain Drain from Israel • Gould and Moav (2007): emigration rates are high for doctors, engineers, scientists, profs.
The Brain Drain from Israel • Dan Ben-David (2008) looks at academics. • The number of Israelis in the top 40 American departments in physics, chemistry, philosophy, computer science and economics, as a percentage of their remaining colleagues in Israel, is over twice the overall academic emigration rates from European countries.
(Only) Two Things Israelis Agree Upon • There is “too much” inequality in Israel. • Israel suffers from a “Brain Drain.” • Our paper: solving one of these problems, may make the other one worse. • Main idea: A “Brain Drain” may be indicative of “too little” inequality. (Borjas (1987), Roy (1951))
Goals of the Paper • Examine the effect of inequality on the incentives to emigrate according to skill levels. • Theoretically and empirically. • For Two types of skills: observable (education) and unobservable (residual wages)
Unique Data • 1995 Israeli Census • Matched with info on who leaves the country during the next 9 years. • Unique: wages of those who stay and leave. • Existing Literature: rare to have wage info on emigrants before they leave (the home country).
Unique Data • Existing Literature: rare to have wage info on emigrants before they leave (the home country). • Without wages: cannot assess selection based on wages, unobservable skill, etc. • Existing Literature: examines mostly education • But, education explains little variation in earnings.
Main Contributions • Empirical: analysis of emigrant selection based on observable and unobservable skill. • Theoretical: incorporate the notion of country-specific skills into the analysis.
Outline of the Talk • Present the Borjas model and discuss the evidence. • Present the basic patterns of the data. • Show that the basic predictions work for observable skills but not for unobservable skills. • Present a model which explains why this is so. • Empirical Work.
Borjas (1987) Model of Emigration • Based on Roy (1951) model. • A person maximizes wages. • Wage in “Home” country: w0 = α0+β0skill • Wage in “Host” country: w1 = α1+β1skill • A person decides to emigrate if: w1 > w0
Borjas (1987) Model of Emigration • Case 1: Positive Selection (β0 < β1 ) Host Wage Home S* Skill Stay Emigrate
Borjas (1987) Model of Emigration • Case 2: Negative Selection (β0 > β1 ) Home Wage Host S* Skill Emigrate Stay
Borjas (1987) Model of Emigration • Inequality affects the selection of immigrants. • Low inequality (β0 < β1 ) induces a Brain Drain. • This is true even if β0 is considered “high.” • Relative Inequality is what matters.
Evidence on the Borjas (1987) Model • Some evidence using immigrant wages from different countries in the US. • (Borjas (1987), Cobb-Clark (1993)) • Selection by education in US or OECD: very mixed • (Feliciano (2005), Grogger and Hanson (2008), Belot and Hatton (2008)). • Possible explanation: comparisons across countries may be confounded by other differences across countries (different moving costs, language, etc).
Evidence on the Borjas (1987) Model • Large Literature on the selection of Mexican immigrants in the US according to education. • Borjas model predicts negative selection – since the returns to education are higher in Mexico. • Chiquiar and Hanson (JPE, 2005) find “intermediate selection,” not negative selection.
Chiquiar and Hanson (JPE, 2005) • Find “intermediate”, not negative selection. • They add “moving costs” to the model which decline with education levels. • Chiswick (1999) and McKenzie and Rapoport (2007) also argue that migration costs decline with education.
Chiquiar and Hanson (JPE, 2005) • Find “intermediate”, not negative selection. • Low education → low emigration due to high moving costs. • High education → low emigration due to high return to education in Mexico. • Mid-level education → highest rate of emigration.
Chiquiar and Hanson (JPE, 2005) • They look only at selection in terms of education. • We also find “intermediate selection” for wages. • Their explanation cannot be used to explain this. • Since returns to skill are higher in US versus Israel. • Therefore, we add “country-specific” skills to model.
Data • 1995 Israeli Census • contains demographic, labor force, information • Merged with an indicator for being a “mover” as of 2002 and 2004. • if he is a “mover,” we also have the year he moved. • “Mover” = out of Israel more than a year.
Weaknesses in the Data • No info on where he “moved.” (most are in US) • No info on whether he intends to come back. • All papers on emigration suffer from this. • The individual probably does not know this. • Our strategy: check robustness of results to different ways of defining a “mover.”
Strengths in the Data • Info on everyone before they decide to move. • Wages, education, occupation, industry, etc. • We can see where they are in the distribution of observable skill (education) and unobservable skill (wages) before they leave.
Our Sample • A strong attachment to the labor force. • at least 30 hrs a week, 6 months in previous year • not self-employed. • Males • ≥ 30 years old as of 1995 (finished schooling) • Young enough so that the moving decision is likely to be career related. (30-45 years old in 1995)
Table 1: Descriptive Statistics for Male Workers from the 1995 Israel Census
Table 2: Descriptive OLS Regressions for Male Workers in Israel and the US
Table 2: Descriptive OLS Regressions for Male Workers in Israel and the US
Overall Patterns in the Data • Selection in terms of education: Positive • consistent with the Borjas Model • ROR to education is much higher in the US. • Selection on unobservables: Inverse U-shape • NOT consistent with the Borjas Model • ROR to unobservable ability is higher in the US.
Overall Patterns in the Data • Selection on unobservables: Inverse U-shape • Chiquiar and Hanson cannot explain this either. • We need to explain why the high end moves less. • They add moving costs which decline with skill, and this will only make them move more. • Our explanation: country-specific skills
A Model of Emigration with Country-Specific Skills • A person maximizes wages. • Wage in “Home” country: w0 = α0 + educ + g + s • Normalize the ROR to educ at home = 1 • “Residual wage” ũ = g + s
A Model of Emigration with Country-Specific Skills • Wage at “Home”: w0 = α0 + educ + g + s • g = “general” unobservable skill (ability, etc) • s = “country-specific” unobservable skills • personal connections, language skills, cultural barriers, knowledge about business practices, laws, consumer tastes, regulations, etc. • firm specific skills • “luck” (being at the right place at the right time)
A Model of Emigration with Country-Specific Skills • Wage at “Home”: w0 = α0 + educ + g + s • g and s are uniformly distributed [0,1], independent • Wage at “Host”: w1 = α1 + β1educ + γ1g - f • s is lost if he moves to the “host” country. • f is the fixed-cost of moving • Assume:β1>1 γ1>1 (Israel versus U.S.)
A Model of Emigration with Country-Specific Skills • Wage at “Home”: w0 = α0 + educ + g + s • Wage at “Host”: w1 = α1 + β1educ + γ1g – f • A person decides to emigrate if: w1 > w0 β∙educ + γ∙g > a + s • where β= β1-1 γ= γ1-1 a= α0- α1+f
A Model of Emigration with Country-Specific Skills • A person decides to emigrate if: w1 > w0 β∙educ + γ∙g > a + s • where β= β1-1 γ= γ1-1 a= α0- α1+f Benefits of Emigration Costs of Emigration
A Model of Emigration with Country-Specific Skills • Wage at “Home”: w0 = α0 + educ + g + s • Wage at “Host”: w1 = α1 + β1educ + γ1g • Restrict our attention to the cases where: β1>1 andγ1>1 → Returns to skill are higher in host country β1andγ1 are not “too high” → most people do NOT move.
A Model of Emigration with Country-Specific Skills Results: Selection in terms of Education • Emigrants are positively selected. • The curve is convex (like Figures 1 and 2). • The positive selection intensifies as β1increases.
A Model of Emigration with Country-Specific Skills Probability to Emigrate ↑β1 Education
A Model of Emigration with Country-Specific Skills Results: Selection in terms of Residual Wage = g + s • Inverse U-shaped function (like Figures 4-6) • The positive selection intensifies as γ1increases. • The curves shifts right, but u-shape remains intact.