1 / 50

Computer Graphics

Computer Graphics. Rendering Geometric Primitives Reading: HB4, HB8-1 to HB8-6, HK9.7, 11. Last updated on 06-02-2012. Rendering. Goal transform computer models into images may or may not be photo-realistic interactive rendering fast, but limited quality

ursala
Télécharger la présentation

Computer Graphics

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Computer Graphics Rendering Geometric Primitives Reading: HB4, HB8-1 to HB8-6, HK9.7, 11 Last updated on 06-02-2012

  2. Rendering • Goal • transform computer models into images • may or may not be photo-realistic • interactive rendering • fast, but limited quality • roughly follows a fixed patterns of operations • rendering pipeline • offline rendering • ray tracing • global illumination

  3. Rendering • Tasks that need to be performed • project all 3D geometry onto the image plane • geometric transformations • determine which primitives or parts of primitives are visible • hidden surface removal • determine which pixels a geometric primitive covers • scan conversion • compute the color of every visible surface point • lighting, shading, texture mapping

  4. Rendering Pipeline • What is the pipeline? • abstract model for sequence of operations to transform geometric model into digital image • abstraction of the way graphics hardware works • underlying model for application programming interfaces (APIs) that allow programming of graphics hardware • OpenGL • Direct 3D • Actual implementation details of rendering pipeline will vary

  5. Geometry Database Model/View Transform. Perspective Transform. Lighting Clipping Frame- Buffer Texturing Scan Conversion Depth Test Blending Rendering Pipeline

  6. Geometry Database • Geometry database • Application-specific data structure for holding geometric information • Depends on specific needs of application • triangle, points, mesh with connectivity information, curved surface Geometry Database

  7. Model/View Transformation • Modeling Transformation • Map all geometric objects from local coordinate system into world coordinates • Viewing transformation • Map all geometry from world coordinates into camera coordinates Geometry Database Model/View Transform.

  8. Lighting • Lighting • Compute brightness based on property of material and light position(s) • Computation is performed per-vertex Geometry Database Model/View Transform. Lighting

  9. Perspective Transformation • Perspective Transformation • Projecting the geometry onto the image plane • Projective transformations and model/view transformations can all be expressed with 4x4 matrix operations Geometry Database Model/View Transform. Perspective Transform. Lighting

  10. Clipping • Clipping • Removal of parts of the geometry that fall outside the visible screen or window region • May require re-tessellation of geometry Geometry Database Model/View Transform. Perspective Transform. Lighting Clipping

  11. Scan Conversion • Scan Conversion • Turn 2D drawing primitives (lines, polygons etc.) into individual pixels • Interpolate color across primitive • Generate discrete fragments Geometry Database Model/View Transform. Perspective Transform. Lighting Clipping Scan Conversion

  12. Texture Mapping • Texture Mapping • “Gluing images onto geometry” • Color of every fragment is altered by looking up a new color value from an image Geometry Database Model/View Transform. Perspective Transform. Lighting Clipping Texturing Scan Conversion

  13. Depth Test Geometry Database Model/View Transform. Perspective Transform. Lighting Clipping Texturing Scan Conversion Depth Test • Depth Test • Remove parts of geometry hidden behind other geometric objects • Perform on every individual fragment

  14. Blending Geometry Database Model/View Transform. Perspective Transform. Lighting Clipping Texturing Scan Conversion Depth Test Blending • Blending • Final image: write fragments to pixels • Draw from farthest to nearest • No blending – replace previous color • Blending: combine new & old values with arithmetic operations

  15. Geometry Database Model/View Transform. Perspective Transform. Lighting Clipping Frame- Buffer Texturing Scan Conversion Depth Test Blending Frame Buffer • Frame Buffer • Video memory on graphics board that holds image • Double-buffering: two separate buffers • Draw into one while displaying other, then swap to avoid flicker

  16. Pipeline Advantages • Modularity: logical separation of different components • Easy to parallelize • Earlier stages can already work on new data while later stages still work with previous data • Similar to pipelining in modern CPUs • But much more aggressive parallelization possible (special purpose hardware!) • Important for hardware implementations • Only local knowledge of the scene is necessary

  17. Pipeline Disadvantages • Limited flexibility • Some algorithms would require different ordering of pipeline stages • hard to achieve while still preserving compatibility • Only local knowledge of scene is available • shadows, global illumination difficult

  18. 3D Scene Representation • Scene is usually approximated by 3D primitives • Point • Line segment • Polygon • Polyhedron • Cylinder • Curved surface • Solid object • etc.

  19. OpenGLAttributes of Graphics Primitives • Color, antialiasing, … • Point attributes, • Line attributes, • Curve attributes, • Character attributes

  20. OpenGLAttributes of Graphics Primitives • Attributes are any parameters that affect the way graphic primitives are displayed. • Basic attributes • Color • Size • Style • Fill patterns

  21. OpenGLAttributes of Graphics Primitives • Attribute parameter • A parameter that affects the way a primitive is to be displayed, ex: color, size. • State system / State machine • A graphics system that maintains a list for the current values of attributes

  22. OpenGLState Variables • All OpenGL state parameters have default values. • Set the state once, remains until overwritten • Changing the attribute settings • Only affects those primitives that are specified after the OpenGL state is changed • Lines: blue or orange, dotted or dashed, and fat or thin. • State parameters can have more than two states, e.g., colors, styles, etc.

  23. Stored Color Values in Frame Buffer Displayed Color Red GREEN Blue Black Blue Green Cyan Red Magenta Yellow White 0 1 2 3 4 5 6 7 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 OpenGLColor & Gray Scale • Color is a common attribute for all primitives • Color information can be stored in two ways 1. RGB color codes 2. Color table

  24. OpenGLColor & Gray Scale • Color is a common attribute for all primitives • Color information can be stored in two ways • 1. RGB color codes • 2. Color table

  25. OpenGLColor Functions Set color display mode 1. OpenGL RGB and RGBA mode 2. OpenGL Color-Index Mode glutInitDisplayMode ( GLUT_SINGLE | GLUT_RGB ) GLUT_RGBA GLUT_INDEX glColor* (colorComponents); // Select current color glIndexi(196); glutSetColor (index, red, green, blue); // Select current color // Specify color into a table

  26. Source OpenGLColor Functions OpenGL color blending • Combining the color of overlapping objects • Blending an object with the background Color-blending function Destination object: Current object in the frame buffer • Source object: Other object in the frame buffer glEnable(GL_BLEND); glDisable(GL_BLEND); Destination  Blending methods can be performed only in RGB or RGBA mode.

  27. Source OpenGLColor Functions Blending Factors • glColor4f(R, G, B, A), A is a blending factor • Source color components are (Rs, Gs, Bs, As) • Destination color components are (Rd, Gd, Bd, Ad) • Source blending factors are (Sr, Sg, Sb, Sa) • Destination blending factors are (Dr, Dg, Db, Da) • The new blending color that is then loaded into the frame buffer is calculated as: • (SrRs+DrRd, SrGs+DgGd, SbBs+DbBd, SaAs+DaAd) Destination

  28. Source OpenGLColor Functions glBlendFunc (sFactor, dFactor); Default: GL_ONE GL_ZERO (1.0, 1.0, 1.0, 1.0) (0.0, 0.0, 0.0, 0.0) Ex. glBlendFunc(GL_SRC_ALPHA,GL_ONE); Ex: implement it by using glColor4f (0.8, 0.2, 0.2, 0.4); Destination

  29. OpenGLExample: Blending 1/3 #include <GL/glut.h> void init (void) { glEnable(GL_BLEND); glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); // (sFactor, dFactor) glClearColor (1.0, 1.0, 1.0, 0.0); //(red, green, blue, alpha) }

  30. OpenGLExample: Blending 2/3 void display(void) { glClear (GL_COLOR_BUFFER_BIT); glBegin(GL_TRIANGLES); // Draw triangle glColor4f(1.0, 0.0, 0.0, 0.75); glVertex3f(0, -0.5, 0.0); glVertex3f(0.5, -0.5, 0.0); glVertex3f(0, 1, 0.0); glEnd(); glBegin(GL_POLYGON); // Draw rectangle glColor4f(0.0, 0.0, 1.0, 0.75); glVertex3f (-0.6, -0.6, 0); glVertex3f (0.6, -0.6, 0); glVertex3f (0.6, 0.6, 0); glVertex3f (-0.6, 0.6, 0); glEnd(); glFlush (); }

  31. OpenGLExample: Blending 3/3 int main(intargc, char** argv) { glutInit(&argc, argv); glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB); glutInitWindowSize (600, 400); glutInitWindowPosition (200, 100); glutCreateWindow ("Hello Students"); init(); glutDisplayFunc(display); glutMainLoop(); return 0; }

  32. OpenGLHome Work Plot red, green & blue circles overlapping as shown in figure. Reading: HB4, RB

  33. OpenGLPoint Attributes & Functions • Basic attributes • Color • Size • A multiple of the pixel size (a square) • glPointSize (size); // size is the number of pixels

  34. OpenGLLine Attributes & Functions • Basic attributes • Color • Width • glLineWidth(width); • Style • glEnable(GL_LINE_STIPPLE); • glLineStippel(repeatFactor, pattern); • Other attributes • Shade • glShadeModel(GL_SMOOTH); How many times each bit is to be repeat 16-bit integer Default: 0xFFFF Solid line Lower-order bits are applied first

  35. dashed line Inter-dash spacing OpenGLLine Attributes & Functions Pixel mask • A pattern of binary digits • For example, 11111000

  36. OpenGLFill-Area Attribute Functions • OpenGL fill-area routines for convex polygons only. • Four steps: • Define a fill pattern • Invoke the polygon-fill routine • Activate the polygon-fill feature • Describe the polygons to be filled.

  37. OpenGLExample void init(void) { glClearColor (0.0, 0.0, 0.0, 0.0); glShadeModel (GL_SMOOTH)} void triangle(void) { glBegin (GL_TRIANGLES); glColor3f (1.0, 0.0, 0.0); glVertex2f (5.0, 5.0); glColor3f (0.0, 1.0, 0.0); glVertex2f (25.0, 5.0); glColor3f (0.0, 0.0, 1.0); glVertex2f (5.0, 25.0); glEnd(); }

  38. OpenGLPolygon Stippling

  39. OpenGLPolygon Stippling byte fly[] = { (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x03, (byte) 0x80, (byte) 0x01, (byte) 0xC0, (byte) 0x06, (byte) 0xC0, (byte) 0x03, (byte) 0x60, (byte) 0x04, (byte) 0x60, (byte) 0x06, (byte) 0x20, (byte) 0x04, (byte) 0x30, (byte) 0x0C, (byte) 0x20, (byte) 0x04, (byte) 0x18, (byte) 0x18, (byte) 0x20, (byte) 0x04, (byte) 0x0C, (byte) 0x30, (byte) 0x20, (byte) 0x04, (byte) 0x06, (byte) 0x60, (byte) 0x20, (byte) 0x44, (byte) 0x03, (byte) 0xC0, (byte) 0x22, (byte) 0x44, (byte) 0x01, (byte) 0x80, (byte) 0x22, (byte) 0x44, (byte) 0x01, (byte) 0x80, (byte) 0x22, (byte) 0x44, (byte) 0x01, (byte) 0x80, (byte) 0x22, (byte) 0x44, (byte) 0x01, (byte) 0x80, (byte) 0x22, (byte) 0x44, (byte) 0x01, (byte) 0x80, (byte) 0x22, (byte) 0x44, (byte) 0x01, (byte) 0x80, (byte) 0x22, (byte) 0x66, (byte) 0x01, (byte) 0x80, (byte) 0x66, (byte) 0x33, (byte) 0x01, (byte) 0x80, (byte) 0xCC, (byte) 0x19, (byte) 0x81, (byte) 0x81, (byte) 0x98, (byte) 0x0C, (byte) 0xC1, (byte) 0x83, (byte) 0x30, (byte) 0x07, (byte) 0xe1, (byte) 0x87, (byte) 0xe0, (byte) 0x03, (byte) 0x3f, (byte) 0xfc, (byte) 0xc0, (byte) 0x03, (byte) 0x31, (byte) 0x8c, (byte) 0xc0, (byte) 0x03, (byte) 0x33, (byte) 0xcc, (byte) 0xc0, (byte) 0x06, (byte) 0x64, (byte) 0x26, (byte) 0x60, (byte) 0x0c, (byte) 0xcc, (byte) 0x33, (byte) 0x30, (byte) 0x18, (byte) 0xcc, (byte) 0x33, (byte) 0x18, (byte) 0x10, (byte) 0xc4, (byte) 0x23, (byte) 0x08, (byte) 0x10, (byte) 0x63, (byte) 0xC6, (byte) 0x08, (byte) 0x10, (byte) 0x30, (byte) 0x0c, (byte) 0x08, (byte) 0x10, (byte) 0x18, (byte) 0x18, (byte) 0x08, (byte) 0x10, (byte) 0x00, (byte) 0x00, (byte) 0x08 };

  40. 3D Geometric Primitives

  41. Rendering • Generate an image from geometric primitives Rendering Geometric Primitives Raster Image

  42. 3D Rendering Example What issues must be addressed by a 3D rendering system?

  43. 3D Object RepresentationPolyhedra

  44. OpenGL 3D Primitives (GLUT Support)

  45. OpenGL 3D Primitives • Cube • glutWireCube(GLdouble size) • size = length of a side • Sphere • glutWireSphere(GLdouble radius, GLintnSlices, GLintnStacks) • Approximated by polygonal faces • nSlices = # of polygons around z-axis • nStacks = # of bands along z-axis There are solid counterparts of the wire objects

  46. OpenGL 3D Primitives • Regular Polyhedron • Tetrahedron (4 sided) • glutWireTetrahedron() • Hexahedron (6 sided) • glutWireHexahedron() • Octahedron (8 sided) • glutWireOctahedron() • Dodecahedron (12 sided) • glutWireDodecahedron() • Icosahedron (20 sided) • glutWireIcosahedron() Display with center at the origin and with radius (distance from the center of polyhedron to any vertex) equal to Sqrt(3)

  47. OpenGL 3D Primitives • Cone • glutWireCone(GLdoublebaseRad, GLdouble height, GLintnSlices, GLintnStacks) • Axis coincides with the z-axis • Base rests on xy-plane and extends to +ve z = height • baseRad: radius at z = 0 • nSlices: The number of subdivisions around the z axis. • nStacks: The number of subdivisions along the z axis.

  48. OpenGL 3D Primitives • Torus • glutWireTorus(GLdoubleinRad, GLdoubleoutRad, GLintnSlices, GLintnStacks) • Approximated by polygonal faces • Teapots • glutWireTeapot(GLdouble size)

  49. Things to do OpenGL practice: HB 2.9

  50. References • http://www.ugrad.cs.ubc.ca/~cs314/ • http://faculty.cs.tamu.edu/schaefer/teaching/441_Spring2012/index.html • http://faculty.cs.tamu.edu/schaefer/teaching/441_Spring2012/index.html • http://www.ugrad.cs.ubc.ca/~cs314/Vjan2007/

More Related