1 / 35

How do I use length and midpoint of a segment?

Essential Questions. How do I use length and midpoint of a segment?. Vocabulary. coordinate midpoint distance bisect length segment bisector construction between congruent segments.

vashon
Télécharger la présentation

How do I use length and midpoint of a segment?

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Essential Questions How do I use length and midpoint of a segment?

  2. Vocabulary coordinate midpoint distance bisect length segment bisector construction between congruent segments

  3. The distance between any two points is the absolute value of the difference of the coordinates. If the coordinates of points A and B are a and b, then the distance between A and B is |a – b| or |b – a|. The distance between A and B is also called the length of AB, or AB. A B AB = |a – b| or |b - a| a b

  4. Congruent segments are segments that have the same length. In the diagram, PQ = RS, so you can write PQRS. This is read as “segment PQ is congruent to segment RS.” Tick marks are used in a figure to show congruent segments.

  5. In order for you to say that a point B is between two points A and C, all three points must lie on the same line, and AB + BC = AC.

  6. – 2 – 2 –3x –3x 2 2 Example 1: Using the Segment Addition Postulate M is between N and O. Find NO. NM + MO = NO Seg. Add. Postulate 17 + (3x – 5) = 5x + 2 Substitute the given values 3x + 12 = 5x + 2 Simplify. Subtract 2 from both sides. Simplify. 3x + 10 = 5x Subtract 3x from both sides. 10 = 2x Divide both sides by 2. 5 = x

  7. Example 1 Continued M is between N and O. Find NO. NO = 5x + 2 = 5(5) + 2 Substitute 5 for x. Simplify. = 27

  8. – 3x – 3x 12 3x = 3 3 Check It Out! Example 2 E is between D and F. Find DF. DE + EF = DF Seg. Add. Postulate (3x – 1) + 13 = 6x Substitute the given values 3x + 12 = 6x Subtract 3x from both sides. Simplify. 12 = 3x Divide both sides by 3. 4 = x

  9. Check It Out! Example 2 Continued E is between D and F. Find DF. DF = 6x = 6(4) Substitute 4 for x. Simplify. = 24

  10. The midpointM of AB is the point that bisects, or divides, the segment into two congruent segments. If M is the midpoint of AB, then AM = MB. So if AB = 6, then AM = 3 and MB = 3.

  11. Example 3: Recreation Application The map shows the route for a race. You are at X, 6000 ft from the first checkpoint C. The second checkpoint D is located at the midpoint between C and the end of the race Y. The total race is 3 miles. How far apart are the 2 checkpoints? XY = 3(5280 ft) Convert race distance to feet. = 15,840 ft

  12. – 6000 – 6000 D is the mdpt. of CY, so CD = CY. Example 3 Continued XC + CY = XY Seg. Add. Post. Substitute 6000 for XC and 15,840 for XY. 6000 + CY = 15,840 Subtract 6000 from both sides. Simplify. CY = 9840 = 4920 ft The checkpoints are 4920 ft apart.

  13. D is the midpoint of EF, ED = 4x + 6, and DF = 7x – 9. Find ED, DF, and EF. D is the mdpt. of EF. –4x –4x +9 + 9 Example 4: Using Midpoints to Find Lengths E D 4x + 6 F 7x – 9 Step 1 Solve for x. ED = DF 4x + 6 = 7x – 9 Substitute 4x + 6 for ED and 7x – 9 for DF. Subtract 4x from both sides. 6 = 3x – 9 Simplify. Add 9 to both sides. 15 = 3x Simplify.

  14. D is the midpoint of EF, ED = 4x + 6, and DF = 7x – 9. Find ED, DF, and EF. Example 4 Continued E D 4x + 6 F 7x – 9 Step 2 Find ED, DF, and EF. ED = 4x + 6 DF = 7x – 9 EF = ED + DF = 4(5) + 6 = 7(5) – 9 = 26 + 26 = 52 = 26 = 26

  15. S is the mdpt. of RT. +3x +3x Check It Out! Example 5 S is the midpoint of RT, RS = –2x, and ST = –3x – 2. Find RS, ST, and RT. R S T –2x –3x – 2 Step 1 Solve for x. RS = ST –2x = –3x – 2 Substitute –2x for RS and –3x – 2 for ST. Add 3x to both sides. x = –2 Simplify.

  16. Check It Out! Example 5 Continued S is the midpoint of RT, RS = –2x, and ST = –3x – 2. Find RS, ST, and RT. R S T –2x –3x – 2 Step 2 Find RS, ST, and RT. RS = –2x ST = –3x – 2 RT = RS + ST = –2(–2) = –3(–2) – 2 = 4 + 4 = 8 = 4 = 4

  17. The set of all points between the sides of the angle is the interior of an angle. The exterior of an angleis the set of all points outside the angle. Angle Name R, SRT, TRS, or 1 You cannot name an angle just by its vertex if the point is the vertex of more than one angle. In this case, you must use all three points to name the angle, and the middle point is always the vertex.

  18. Check It Out! Example 6 Write the different ways you can name the angles in the diagram. RTQ, T, STR, 1, 2

  19. The measureof an angle is usually given in degrees. Since there are 360° in a circle, one degreeis of a circle. When you use a protractor to measure angles, you are applying the following postulate.

  20. If OC corresponds with c and OD corresponds with d, mDOC = |d– c| or |c– d|. You can use the Protractor Postulate to help you classify angles by their measure. The measure of an angle is the absolute value of the difference of the real numbers that the rays correspond with on a protractor.

  21. Check It Out! Example 7 Use the diagram to find the measure of each angle. Then classify each as acute, right, or obtuse. a. BOA b. DOB c. EOC mBOA = 40° BOA is acute. mDOB = 125° DOB is obtuse. mEOC = 105° EOC is obtuse.

  22. Congruent angles are angles that have the same measure. In the diagram, mABC = mDEF, so you can write ABC  DEF. This is read as “angle ABC is congruent to angle DEF.” Arc marks are used to show that the two angles are congruent. The Angle Addition Postulate is very similar to the Segment Addition Postulate that you learned in the previous lesson.

  23. Check It Out! Example 8 mXWZ = 121° and mXWY = 59°. Find mYWZ. mYWZ = mXWZ – mXWY  Add. Post. mYWZ= 121– 59 Substitute the given values. mYWZ= 62 Subtract.

  24. An angle bisector is a ray that divides an angle into two congruent angles. JK bisects LJM; thus LJKKJM.

  25. KM bisects JKL, mJKM = (4x + 6)°, and mMKL = (7x – 12)°. Find mJKM. Example 9: Finding the Measure of an Angle

  26. +12 +12 –4x –4x Example 9 Continued Step 1 Find x. mJKM = mMKL Def. of  bisector (4x + 6)° = (7x – 12)° Substitute the given values. Add 12 to both sides. 4x + 18 = 7x Simplify. Subtract 4x from both sides. 18 = 3x Divide both sides by 3. 6 = x Simplify.

  27. Example 9 Continued Step 2 FindmJKM. mJKM = 4x + 6 = 4(6) + 6 Substitute 6 for x. = 30 Simplify.

  28. QS bisects PQR, mPQS = (5y – 1)°, and mPQR = (8y + 12)°. Find mPQS. Check It Out! Example 10 Find the measure of each angle. Step 1 Find y. Def. of  bisector Substitute the given values. 5y – 1 = 4y + 6 Simplify. y – 1 = 6 Subtract 4y from both sides. y = 7 Add 1 to both sides.

  29. Check It Out! Example 10 Continued Step 2 FindmPQS. mPQS = 5y – 1 = 5(7) – 1 Substitute 7 for y. = 34 Simplify.

  30. JK bisects LJM, mLJK = (-10x + 3)°, and mKJM = (–x + 21)°. Find mLJM. +x +x –3 –3 Check It Out! Example 11 Find the measure of each angle. Step 1 Find x. LJK = KJM Def. of  bisector (–10x + 3)° = (–x + 21)° Substitute the given values. Add x to both sides. Simplify. –9x + 3 = 21 Subtract 3 from both sides. –9x = 18 Divide both sides by –9. x = –2 Simplify.

  31. Check It Out! Example 11 Continued Step 2 FindmLJM. mLJM = mLJK + mKJM = (–10x + 3)° + (–x + 21)° = –10(–2) + 3 – (–2) + 21 Substitute –2 for x. = 20 + 3 + 2 + 21 Simplify. = 46°

  32. Assignment Segments page 11-13 #12, 16-23, 28-29, 31-32, 36-40 Angles page 18-20 #16-18, 27, 29-38, 41-44

More Related