1 / 46

Ewolucja Wszechświata Wykład 9

Ewolucja Wszechświata Wykład 9. Diagram HR. 9 mld lat. 1 mld lat. Błysk helowy. Spalanie wodoru w warstwie otaczającej jądro. Ewolucja gwiazd małych. Jądro kurczy się. Gwiazda odrzuca zewnętrzne warstwy. Mgławica planetarna. Spalanie helu w jądrze. Jądro stygnie – brak paliwa.

Télécharger la présentation

Ewolucja Wszechświata Wykład 9

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Ewolucja WszechświataWykład 9

  2. Diagram HR

  3. 9 mld lat 1 mld lat Błysk helowy Spalanie wodoru w warstwie otaczającej jądro Ewolucja gwiazd małych Jądro kurczy się Gwiazda odrzuca zewnętrzne warstwy Mgławica planetarna Spalanie helu w jądrze Jądro stygnie – brak paliwa Spalanie wodoru w jądrze Biały karzeł

  4. Ewolucja gwiazd Obłok gazowy o masie 50 Słońc zaczyna zapadać się pod wpływem grawitacji. Tworzą się gwiazdy, niektóre z proto-planetarnymi dyskami. Początkowo obłok ma 1,2 lat świetlnych średnicy i temperaturę 10 K. Symulacje powstawania gwiazd: http://www.ukaff.ac.uk/movies.shtml

  5. Ewolucja gwiazd masywnych Gwiazdy o masach większych niż 3 masy Słońca Nukleosynteza nie kończy się na węglu, jak dla gwiazd mniejszych. Gdy wyczerpią się zapasy helu, jądro gwiazdy kurczy się i osiąga temperaturę (T > 600 mln K), przy której dochodzi do zapalenia węgla: +13,930 MeV +2,238 MeV +4,612 MeV -0,114 MeV

  6. Ewolucja gwiazd masywnych Nukleosynteza kończy się na żelazie 56Fe. Synteza żelaza jest już procesem endotermicznym.

  7. Ewolucja gwiazd masywnych Synteza coraz cięższych jąder trwa coraz krócej! Podczas syntezy żelaza jądro traci energię Jądro zaczyna się zapadać i ogrzewać.

  8. Ewolucja gwiazd masywnych Podczas zapadania jądro przechodzi przez fazę białego karła (zdegenerowany gaz elektronowy), jednak masa jest większa niż 1,44M i ciśnienie zdegenerowanego gazu nie może powstrzymać grawitacji. W temperaturze 5 – 10 mld K zaczyna się proces fotodezintegracji jąder: Jądra atomowe rozpadają się W procesie tym pobierana jest wielka energia Jądro gwiazdy zapada się coraz szybciej

  9. Na te elektrony nie ma miejsca w przestrzeni fazowej Ewolucja gwiazd masywnych Większość protonów zamienia się w neutrony w wyniku odwrotnego rozpadu beta: Jest to proces nieodwracalny, ponieważ rozpady beta nie mogą zachodzić. degeneracja gazu elektronowego

  10. Gwiazdy neutronowe Neutrony też są fermionami Powstaje zdegenerowany gaz neutronowy o olbrzymim ciśnieniu, które zatrzymuje proces kontrakcji. Jądro staje się gwiazdą neutronową Obiekt o promieniu około 10 - 20 km, masie równej 1 – 2 mas Słońca i gęstości miliarda ton na cm3! Największą masą gwiazdy neutronowej jest prawdopodobnie 1,5-2 masy Słońca (masa Oppenheimera-Volkoffa) Gdy masa jest większa, ciśnienie zdegenerowanego gazu neutronowego nie może powstrzymać kontrakcji jądra i gwiazda zapada się w czarną dziurę.

  11. Wypalone gwiazdy mogą zajmować położenia tylko na tych krawędziach. Śmierć gwiazdy

  12. Porównanie wielkości gwiazdy neutronowej i białego karła. Gęstość gwiazdy neutronowej jest ogromna! Gwiazdy neutronowe

  13. Gwiazdy neutronowe Wielokrotne zmniejszenie promienia powoduje znaczny wzrost prędkości rotacji. W czasie kurczenia jądra zostaje zachowany moment pędu. Gwiazdy neutronowe mają bardzo silne, dipolowe pola magnetyczne. Bieguny magnetyczne nie muszą znajdować się na osi rotacji. Niektóre gwiazdy neutronowe obserwujemy jako pulsary. Pulsary wysyłają krótkie błyski o częstościach radiowych, powtarzające się z zegarową dokładnością z okresem od milisekund do sekund. Fale radiowe generowane są przez relatywistyczne elektrony, krążące wokół linii sił pola magnetycznego. Kierunek emisji promieniowania ograniczony jest do wąskiego stożka w przestrzeni, który szybko rotuje wraz z gwiazdą.

  14. Cykl życiowy masywnej gwiazdy Supernowa Jądro gwiazdy z materii neutronowej jest nieściśliwe. Opadające na nie zewnętrzne warstwy gwiazdy, gwałtownie odbijąją się. Gwiazda wybucha jako supernowa Emituje tyle energii, ile cała galaktyka (miliardy gwiazd) W czasie wybuchu zachodzą szybkie reakcje syntezy ciężkich pierwiastków (cięższych od żelaza).

  15. Supernowa Zmiany jasności supernowej w czasie. Wybuch supernowej trwa zaledwie kilka dni.

  16. Supernowa nukleosynteza Wyczerpanie zapasów i kontrakcja jądra Początek wybuchu W trakcie wybuchu maleje jasność i zmienia się barwa od niebieskiej do czerwonej Pozostała wirująca gwiazda neutronowa - pulsar

  17. Wybuch supernowej w galaktyce Centaurus A Supernowa Zmienność jasności supernowej w czasie Jej jasność porównywalna z jasnością całej galaktyki Po kliknięciu na zdięciu uruchomi się film mpeg

  18. Trzy zdjęcia wykonane za pomocą HST ukazują: (u góry) Głębokie Pole Hubble'a z licznymi odległymi galaktykami; (u dołu z lewej) strzałka wskazuje galaktykę eliptyczną, w której wybuchła supernowa - obszar ten to powiększony kwadracik na górnym zdjęciu; (u dołu z prawej) sama eksplodująca gwiazda. Fot. NASA/Adam Riess/STScI. Supernowa Porównano dwa zdjęcia Głębokiego Pola Hubble'a, wykonane w odstępie 2 lat: w 1995 i 1997 r. Porównując komputerowo jasność galaktyk i jej zmiany, odkryto nagłe pojaśnienie na zdjęciu z 1997 r. Supernowa!

  19. Supernowe Kolizja dwóch galaktyk NGC 4038 i NGC 4039 w konstelacji Kruka (zdjęcie z obserwatorium Chandra). Czarne dziury i gwiazdy neutronowe widoczne jako silne źródła promieniowania rentgenowskiego (jasno świecące plamy). W czasie kolizji galaktyk rzadko dochodzi do bezpośrednich zderzeń gwiazd, w zamian za to chmury gazu i pyłu obu galaktyk, oddziałując na siebie, wyzwalają gwałtowne eksplozje gwiazd olbrzymów, w wyniku których powstają tysiące supernowych. Eksplodujące gwiazdy pozostawiają bąble wzbudzonego gorącego gazu i zapadnięte jądra gwiazd. Autor: NASA

  20. Wielkości gwiazd -porównanie

  21. Ewolucja gwiazdy masywnej Ewolucja gwiazdy podobnej do Słońca Brązowe karły Ewolucja gwiazd - podsumowanie

  22. Masa gwiazdy Ewolucja gwiazd - podsumowanie

  23. Gromady gwiazd Droga Mleczna w otoczeniu gromad gwiazd. Fot. Obserwatorium w Lund

  24. Gromady gwiazd Gromady otwarte Gromady otwarte są mniejsze od gromad kulistych. W ich skład wchodzi do kilku tysięcy gwiazd. Są stosunkowo młode, ich wiek dochodzi do kilku miliardów lat, ale najmłodsze z nich liczą sobie zaledwie kilka milionów lat. Gromada otwarta NGC1850

  25. Gromady gwiazd Diagramy HR dla gromadotwartych – prawie wszystkie gwiazdy leżą na ciągu głównym. Wiek gromady liczony w milionach lat.

  26. Gromady gwiazd Wiek gromady można określić na podstawie punktu odejścia od ciągu głównego.

  27. Gromady gwiazd Gromady kuliste W skład gromad kulistych wchodzi wiele tysięcy lub nawet milionów gwiazd, które tworzą sferę. Gromady tego typu są bardzo stare - czasem ich wiek jest zbliżony do wieku Wszechświata.

  28. Gromady gwiazd Diagram HR dla gromady kulistej NGC6362 Wiek gromady: 12 mld lat

  29. Populacje gwiazd Podział gwiazd wprowadzony przez W. Baadego w latach 1940: Populacja I - gwiazdy względnie młode, występujące w ramionach spiralnych galaktyk, zwykle w sąsiedztwie gazu i pyłu. Populacja II - gwiazdy starsze, występujące zwykle w obszarach pozbawionych gazu i pyłu takich jak gromady kuliste i jądra galaktyk.

  30. Gwiazdy neutronowe Gwiazda w końcowym etapie swojej ewolucji, zbudowana ze zdegenerowanych neutronów. Obiekt o rozmiarach rzędu 10 - 20 km, masie zbliżonej do masy Słońca. Analogia do stanu podstawowego atomu. Neutrony zajmują najniższe poziomy energetyczne i one określają rozmiary gwiazdy, podobnie jak elektrony zajmujące najniższe stany energetyczne w atomie określają jego wielkość. Istnienie gwiazd neutronowych zostało przewidziane teoretycznie w 1938 r. (L. Landau), a pierwszych obserwacji dokonano w 1967 r. (odkrycie pulsara przez J. Bell i A. Hewisha).

  31. Gwiazdy neutronowe Gwiazda neutronowa rodzi się jako obiekt bardzo gorący, o temperaturze wnętrza T ~ 1011 K Szybko stygnie – już po roku temperatura spada do T ~ 109 K Gęstość materii we wnętrzu gwiazdy neutronowej rośnie od kilku g/cm3 na powierzchni do ~ 1015 g/cm3 w jej centrum. Ogromna siła grawitacji powoduje, że już na głębokości kilku metrów gęstość materii przekracza 106 g/cm-3. Gwiazdy neutronowe powstają w wyniku zapadania grawitacyjnego centralnych rdzeni masywnych gwiazd (M > 8 mas Słońca), poprzedzającego wybuch supernowej. Mogą również powstawać w wyniku zapadania grawitacyjnego akreujących materię białych karłów.

  32. Gwiazdy neutronowe Często gwiazdy neutronowe występują w układach podwójnych. Gaz z pobliskiego sąsiada może opadać na gwiazdę neutronową, przyciągany przez jej silne pole grawitacyjne. Gaz opada po spirali w środku, której znajduje się gwiazda neutronowa. Podczas opadania gaz tworzy dysk akrecyjny.

  33. Gwiazdy neutronowe Akrecja na gwiazdę neutronową. Materia opadająca na gwiazdę w okolicach biegunów wytwarza duże ilości energii. W przestrzeń zostaje wysłane silne promieniowanie X. Świat Nauki, styczeń 1994

  34. Gwiazdy neutronowe Centaur X-3. Rentgenowski układ podwójny gwiazdy neutronowej i błękitnej gwiazdy o masie 10-40 mas Słońca. Świat Nauki, styczeń 1994

  35. Gwiazdy neutronowe W czasie kurczenia jądra zostaje zachowany moment pędu. Wielokrotne zmniejszenie promienia powoduje znaczny wzrost prędkości rotacji. Ilustracja zachowania momentu pędu Kliknij na obrazek

  36. Jądra znajdujące się w najbardziej zewnętrznej warstwie gwiazdy nie ulegają rozpadowi, lecz tworzą rodzaj skorupy krystalicznej materii jądrowej, utrzymującej materię gwiazdy w równowadze. Gwiazdy neutronowe

  37. Odkrycie pulsarów W 1967 w Instytucie Astronomii Uniwersytetu w Cambridge prof. Hewish zajmował się błyskami źródeł promieniowania radiowego. Doktorantka Hewisha, Jocellyn Bell, zarejestrowała szybkozmienne źródło pulsujące z niezwykle precyzyjnym okresem powtarzalności: T = 1.27376349759 s Niebawem odkryto następneo okresie T=0.033 s Okres zmian zbyt mały,aby wytłumaczyć pulsacje przez efekt zaćmieniowy w układzie podwójnym luboscylacje gwiazdy. Rozwiązanie: Rotacja małej gwiazdy ze źródłem promieniowania znajdującym się na jej powierzchni. Tak szybki obrót mogła wytrzymać tylko hipotetyczna supergęsta gwiazda neutronowa o promieniu około 10 km.

  38. Odkrycie pulsarów Początkowo podejrzewano związek pulsarów z pozaziemskimi cywilizacjami – blokada informacyjna zarządzona przez władze Brytyjskiej Marynarki Królewskiej. Pierwsze pulsary były opatrywane inicjałamiLGM(odLittleGreenMan). Dopiero stwierdzenie systematycznego wydłużenia się okresuobaliło hipotezę cywilizacji pozaziemskiej. Inicjały LGM zostały zastąpione przez PSR (od Pulsating Radio Source) Dzisiaj znamy ponad 700 pulsarów, obserwowanych w paśmie radiowym, a także optycznym, rentgenowskim i wysokoenergetycznym gamma.

  39. Promieniowanie pulsarów W czasie grawitacyjnego zapadania gwiazdy zachowywany jest strumień pola magnetycznego. Ponieważ zapadająca się gwiazda neutronowa zmniejsza rozmiar około milion razy, jej pole powierzchni zmniejsza się 1012 razy. Tak więcgwiazdy neutronowe obdarzone sągigantycznymi polami magnetycznymi.

  40. Promieniowanie pulsarów Skorupa (crust) to jądra żelaza tworzące siatkę krystaliczną. Swobodne elektrony w skorupie krążą wokół linii pola magnetycznego, emitując skolimowaną wiązkę fal w zakresie od rentgenowskich do radiowych. Kształt impulsów podobny dla wszystkich długości fal, wskazuje, że źródło emisji jest w jednym miejscu gwiazdy.

  41. Promieniowanie pulsarów Bieguny magnetyczne zwykle nie leżą na osi rotacji. Wiązka promieniowania wiruje wokół osi obrotu gwiazdy – efekt latarni morskiej. Wiele gwiazd neutronowych nie obserwujemy w postaci pulsarów, ponieważ ich wiązki radiowe nigdy nie trafiają w Ziemię.

  42. Systematyczne wzrastanie okresu czasami zakłóca nagłe zmniejszenie jego wartości. Promieniowanie pulsarów Wypromieniowanie energii odbywa się kosztem energii kinetycznej ruchu obrotowego pulsara. Prędkość kątowa maleje, a okres obrotu wydłużasię w tempie T/T =10-15. Glicz, czyli trzęsienie gwiazdy

  43. Promieniowanie pulsarów Glicz- nagłe skrócenie okresu rotacyjnego spowodowane gwałtowanymzmniejszeniem momentu bezwładności. Nadciekłe jądro gwiazdy neutronowej, które w wyniku szybkiej rotacji jesteliptyczne, otoczone jestkrystaliczna skorupą.

  44. Promieniowanie pulsarów Zmniejsza się eliptyczność jądra i krystaliczna skorupa traci podtrzymujące ją podłoże. Pulsar systematycznie spowalnia swoją rotację Skorupa co jakiś czas pęka, załamuje się i opada na jądro. Promieńgwiazdy neutronowej maleje ze wzrostem masy Maleje moment bezwładnościi wzrasta prędkość kątowa Przyspieszenie okresu o jedną milionową częśćodpowiadazmniejszeniu się pulsara o jedną dziesiątą milimetra. Gdyby pulsara powiększyć do wielkości Ziemi,oznaczało by to, że w wyniku trzęsienia Ziemi jej powierzchnia nagle opadłaby wszędzie o jeden metr.

More Related