1 / 47

Documentation Standards

Documentation Standards. Block diagrams first step in hierarchical design Schematic diagrams Timing diagrams Circuit descriptions. Documentation standard. Block Diagram. Schematic diagrams. Details of component inputs, outputs, and interconnections Reference designators Title blocks

verity
Télécharger la présentation

Documentation Standards

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Documentation Standards • Block diagrams first step in hierarchical design • Schematic diagrams • Timing diagrams • Circuit descriptions

  2. Documentation standard Block Diagram

  3. Schematic diagrams • Details of component inputs, outputs, and interconnections • Reference designators • Title blocks • Names for all signals • Page-to-page connectors

  4. 8 8 8 8 (warmer + cooler) Wake Period Input keys Digit1 Digit0 Error_Key1 To BCD calculator Error_Key0 To Error Display Select one of Mux From BCD calculator Display D1 D0 Block Diagram For Wake

  5. Chapter : Design modules

  6. I. Using MUX to Implement logic function • A multiplex (Data selector) is a CLN module with: • 2n data inputs • n control inputs • 1 output Depending on the control inputs, the multiplexer connects one of the inputs to the output line. • Block diagram of an 4-to-1 multiplexer: I0 I1 I2 I3 D0 D1 D2 D3 Y’ Data inputs 4-to-1 MUX Y C1 C0 Data select

  7. I. Using MUX to Implement logic function Circuit of an 4-to-1 multiplexer D0 C1’C0’D0 D1 Y’ C1’C0D1 OR Y D2 C1C0’D2 D3 C1C0D3 May add an enable signal E C1 C0

  8. I0 I1 I2 I3 I4 I5 I6 I7 D0 D1 D2 D3 D4 D5 D6 D7 Output 8-to-1 MUX Data inputs C2 C1 C0 Data select I. Using MUX to Implement logic function Block diagram of an 8-to-1 multiplexer:

  9. I. Using MUX to Implement logic function Circuit of an 8-to-1 mulmtiplexer

  10. I. Using MUX to Implement logic function Truth table of an 8-to-1 mulmtiplexer

  11. I. Using MUX to Implement logic function Example of design A 2n input lines and n selection lines MUX may be used to realize any function of (n+1) variables Example Use an 8-to-1 MUX to realize the following function of 4 variables F( A,B,C,D) = (0,2,4,5,6,8,10,13) = A’B’C’D’ + A’B’CD’ + A’BC’D’ + A’BC’D + A’BCD’ + AB’C’D’ + AB’CD’ + ABC’D Solution Use the variables A, B, C as the control (selection) inputs and use the remaining variable D to determine the input lines. Rewrite F to to determine a factor for each input combination ABC: F( A,B,C,D) = A’B’C’D’ + A’B’CD’ + A’BC’(D’ + D) + A’BCD’ + AB’C’D’ + AB’CD’ + ABC’D + ABC (0)

  12. I. Using 8-to-1 MUX to Implement logic function Example Solution (Continued ….) F( A,B,C,D) = A’B’C’D’ + A’B’CD’ + A’BC’(D’ + D) + A’BCD’ + AB’C’D’ + AB’CD’ + ABC’D + ABC (0) So the input to the 8-to-1 MUX are given by : I0=D’, I1=D’, I2=1, I3=D’, I4=D’, I5=D’, I6=D, I7=0 1 D’ D’ 1 D’ D’ D’ D 0 D0 D1 D2 D3 D4 D5 D6 D7 F(A,B,C,D) 8-to-1 MUX C2 C1 C0 A B C

  13. I. Using 8-to-1 MUX to Implement logic function Example Same function F(A,B,C,D) Use BCD as the selection (control ) lines F( A,B,C,D) = (0,2,4,5,6,8,10,13) = A’B’C’D’ + A’B’CD’ + A’BC’D’ + A’BC’D + A’BCD’ + AB’C’D’ + AB’CD’ + ABC’D = B’C’D’ ( ) + B’C’D ( ) + B’CD’ ( ) + B’CD ( ) + BC’D’ ( ) + BC’D ( ) + BCD’ ( ) + BCD ( ) = B’C’D’ ( A+A’ ) + B’C’D ( 0 ) + B’CD’ (A’ + A) + B’CD ( 0 ) + BC’D’ ( A’) + BC’D ( A’+A ) + BCD’ ( A’ ) + BCD ( 0 ) 1 1 1

  14. I. Using 8-to-1 MUX to Implement logic function Example 1 0 1 0 A’ 1 A’ 0 D0 D1 D2 D3 D4 D5 D6 D7 F(A,B,C,D) 8-to-1 MUX C2 C1 C0 B C D • Exercise • Repeat using as selection lines: • A, C, D • A, B, D

  15. I. Using 4-to-1 MUX to Implement logic function Example F(A,B,C,D) = (3,4,8,9,10,13,14,15) = A’B’CD + A’BC’D’ + AB’C’D’ + AB’C’D + AB’CD’ + ABC’D + ABCD’ + ABCD Use AB for Selection lines and factor out the various combinations of AB = A’B’ ( CD ) + A’B ( C’D’ ) + AB’( C’D’ + C’D + CD’ ) + AB ( CD’ + CD’ + CD ) = A’B’ ( CD ) + A’B ( C’D’ ) + AB’( C’ + D’ ) + AB ( C + D ) Implement the circuit of the input lines using NAND (or other) gates

  16. C D C’ D’ I. Using 4-to-1 MUX to Implement logic function Example D0 D1 D2 D3 F’ 4-to-1 MUX F C1 C0 A B

  17. II. Decoders • Depending on the control inputs, the multiplexer connects one of the inputs to the output line. • Block diagram of an 4-to-1 multiplexer:

  18. II. Decoders • General decoder structure • Map each input code to one of the output • Typically n inputs, 2n outputs • 2-to-4, 3-to-8, 4-to-16, etc.

  19. Note “x” (don’t care) notation. II. Decoders Binary 2-to-4 decoder

  20. II. Decoders 2-to-4-decoder logic diagram 00 01 10 11

  21. II. Decoders MSI 2-to-4 decoder • Input buffering (less load) • NAND gates (faster) 00 01 10 11

  22. II. Decoders Decoder Symbol

  23. II. Decoders Complete 74x139 Decoder

  24. II. Decoders More decoder symbols

  25. II. Decoders 000 3-to-8 Decoder 001 010 011 100 101 110 111

  26. II. Decoders 74x138 3-to-8-decoder symbol

  27. I. Using decoders to Implement logic function Example: Given F1 =  X,Y,Z (1,2,3) and F2 =  X,Y,Z (3,5,6,7) Implementation using 3-to-8 Decoder 0 1 2 3 4 5 6 7 X YZ F1 OR F2 OR

  28. I. Using decoders to Implement logic function Example: Given F =  X,Y,Z (0,2,3,4,6,7) Implementation using 3-to-8 Decoder We will implement the complement of F and “NOT” the result F’ = m1 + m5 0 1 2 3 4 5 6 7 X YZ F F’ OR

  29. III. Programmable Logic devices Programmable Logic Arrays (PLAs) • Any combinational logic function can be realized as a sum of products. • Idea: Build a large AND-OR array with lots of inputs and product terms, and programmable connections. • n inputs • AND gates have 2n inputs -- true and complement of each variable. • m outputs, driven by large OR gates • Each AND gate is programmably connected to each output’s OR gate. • p AND gates (p<<2n)

  30. Example: 4x3 PLA, 6 product terms III. Programmable Logic devices

  31. Compact representation III. Programmable Logic devices Input programming Output programming

  32. Some product terms III. Programmable Logic devices

  33. IV. Demultiplexer General description • 1-to-2n Demultiplexer has: • 1- input • Multiple outputs • n select lines • Function: Route the single input to the selected output O0 O1 Om . . I Data input . 1-to-2n DEMUX … Select lines m = 2n - 1

  34. IV. Demultiplexer Function table of a 1-to-4 Demux O0 O1 O2 O3 I Data input 1-to-4 DEMUX x y Select lines x y O0 O1O2 O3 0 0 I 0 0 0 O1 = x‘y’I O2 = x’y I O3 = x y’I O4 = x y I 0 1 0 I 0 0 1 0 0 0 I 0 1 1 0 0 0 I

  35. V.Design by Cascading Design an 8-to-1 MUX using 4-to-1 MUX and other gates Cascading MUXes I0 I1 I2 I3 I4 I5 I6 I7 D0 D1 D2 D3 D4 D5 D6 D7 Output 8-to-1 MUX Data inputs En C2 C1 C0 Data select

  36. V.Design by Cascading Design an 8-to-1 MUX using 4-to-1 MUX and other gates Cascading MUXes D0 D1 D2 D3 I0 I1 I2 I3 4-to-1 MUX 0 Output En C1 C0 OR I4 I5 I6 I7 I0 I1 I2 I3 D0 D1 D2 D3 4-to-1 MUX 1 C1 C0 En C2 C1 C0

  37. Note “x” (don’t care) notation. V. Design by cascading Decoders Recall: Decoder with an enable signal En Cascading Decoders

  38. Decoder 2-to-4 1-to-2 d0 d1 d2 d3 d0 d1 i0 i1 i0 En En En i0 d0 d1 0 X 1 0 1 1 0 0 1 0 0 1 V. Design by cascading Decoders Recall: Decoder with an enable signal En Cascading Decoders d0 d1 d2 d3 En i0 i1 0 X X 1 0 0 1 0 1 1 1 0 1 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 d0 d1 i0 En

  39. 2-to-4 Decoder 2-to-4 1-to-2 d0 d1 d2 d3 d0 d1 i0 i1 d0’ d1’ i0’ En’ En 1-to-2 d2 d3 d0’ d1’ i0’ En’ En i1 i0 V. Design by cascading Decoders Design of a 2-to-4 decoder using 1-to-2 decoders Cascading Decoders Decoder

  40. 2-to-4 Decoder 1-to-2 d0 d1 d0’ d1’ i0’ En’ 1-to-2 d2 d3 d0’ d1’ i0’ En’ En i1 i0 V. Design by cascading Decoders Design of a 2-to-4 decoder using 1-to-2 decoders Cascading Decoders Operation • En enable or disable the decoder • i1=0 enables the top decoder • I1=1 enables the lower decoder

  41. En i1 i0 En i1 i0 En i1 i0 En i1 i0 2-to-4 2-to-4 2-to-4 2-to-4 d0 d1 d2 d3 d0 d1 d2 d3 d0 d1 d2 d3 d0 d1 d2 d3 V. Design by cascading Decoders Design of a 4-to-16 decoder using 2-to-4 decoders Cascading Decoders En i3 i2 i1 i0 En i1 i0 2-to-4 d0 d1 d2 d3 d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15

  42. VI.Modular Design • Goal • Use existing components or design subcomponents as building blocks of higher circuit • Types of solutions • Casdading components • Ripple design • Some outpout at level i are used input at the next level (i+1) • Linear cascading of elements

  43. VI.Modular Design Motivations Design of a 2 bits binary adder X Binary adder S Y S = X + Y X=[X1X0], Y=[Y1Y0], S=[S2S1S0] • Two types of design possible: • Brute force approach: Draw a truth table and derive the • expressions of the output variable • Iterative design

  44. VI.Modular Design Example: 2 bits binary adder X1 X0 Y1 Y0 S0 S1 S0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 1 0 0 1 1 • What if we want to do • design a 5 bits adder: • Truth table with 10 variables • Not pratical 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 0 1 0 0 0 1 1 1 0 1 0 1 0 0 0 0 1 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 1 1 1

  45. VI.Modular Design Iterative design • Identify a basic component: 1-bit adder with carry in • Use the basic component iteratively Basic component • Design of Basic component • Draw its truth table • Design the corresponding circuit Xi 1-bit Full adder Ci Yi Ci-1 Si Iterative design of n-bit adder Xn-2 X0 Yn-2 Y0 Xn-1 Yn-1 1-bit Full adder 1-bit Full adder 1-bit Full adder Cn-3 C-1 Cn-2 … C0 Cn-1 Sn-1 Sn-2 S0

  46. VI.Modular Design Another Example of Modular Design • Design an n-bit comparator to produce the following output F: • F=1 if X > Y • F= 0 otherwise X, Y are n-bit binaries • Basic component C1 • A 1-bit comparator with comparaison result from preceeding • stage • 3 inputs • Xi and Yi bit at stage i, and Fi-1 Result from stage i-1 • 1 output: Fi result of stage I Iterative comparaison of two n-bits X=[Xn-1 …X0] and Y=[Yn-1 …Y0] Xn-1 Xn-2 X1 X0 Cn-1 Cn-2 C1 C0 Fn-1 Fn-2 Fn-3 F1 F0 0 Yn-1 Yn-2 Y1 Y0

  47. VI.Modular Design Another Example of Modular Design Design of the Basic 1-bit Comparator Ci Truth Table K-map XiYi Xi Fi-1 Xi Yi Fi Fi-1 00 01 11 10 Ci 0 0 0 0 Fi Fi-1 1 0 0 0 0 1 Yi 1 0 1 0 1 1 1 1 0 0 1 1 1 1 0 0 0 1 0 1 1 1 1 0 MUX implementation 1 1 1 1 Fi-1 0 4-to-1 Fi MUX 1 Simplified SOP Logic Expression Fi = XiFi-1 + XiYi’ + Yi’Fi-1 Fi-1 Xi Yi

More Related