1 / 23

Haar Wavelets

Haar Wavelets. Contents. Introduction The Haar Transform Conservation and Compaction of Energy Haar Wavelets Multiresolution Analysis Signal Compression Removing Noise. Introduction. A haar wavelet : 가장 간단한 type 의 wavelet The haar transform Discrete form of haar wavelets 와 관련

Télécharger la présentation

Haar Wavelets

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Haar Wavelets

  2. Contents • Introduction • The Haar Transform • Conservation and Compaction of Energy • Haar Wavelets • Multiresolution Analysis • Signal Compression • Removing Noise

  3. Introduction • A haar wavelet : 가장 간단한 type의 wavelet • The haartransform • Discrete form of haarwavelets와 관련 • 모든 wavelettransform의 prototype • 손 계산 가능

  4. The Haar Transform (1) • Analyze될 signals : discrete signals • N: f의 길이로서 positive even integer • f의값 : N개의 실수 • Equally spaced sample values or simply sample values • 아날로그 signal g를등 간격인시간 t = t1, t2, … , tN 에서 sampling

  5. The Haar Transform (2) • Haar transform • Discrete signal을 길이가 반인 두개의 subsignal로 분해 • Running average (trend) • First trend : a1 = (a1, a2, … , aN/2 ) • a1= (f1+f2)/2 * => m = 1,2,3,…,N/2 • Running difference (fluctuation) • First fluctuation : d1 = (d1, d2, … , dN/2 ) • d1=(f1-f2)/2 * => m = 1,2,3,…,N/2

  6. The Haar Transform (3) • The Haar transform : 여러 stages or levels로 수행 • 첫번째 level 의 mapping H1 : • Inverse of H1 : (a1| d1) → f • Small fluctuations feature : fluctuation subsignal 값의 크기는 originalsignal 값의 크기보다 상당히 작다. • 의 평균값 : 7 • 의 평균값 : • 6.6배 차이

  7. The Haar Transform (4) • Small fluctuations feature • 로부터 1024개 값 추출 • g가매우 작은 time 간격을 가진다면,

  8. Conservation and Compaction of Energy (1) • Haartransform의 중요한 두가지 properties • Energy conservation of signals • Energy of f : • : • 1-level haar transform : • Compaction of the energy of signals • Trend : • 440/446 ⇒ 98.7% • Fluctuation : • Trend subsignal a1 의 energy가 transformedsignal (a1| d1)의 energy의많은 부분을 차지함

  9. Conservation and Compaction of Energy (2) • Multiplelevels transform • Conservation of energy • : • Compaction or localization of the energy of f • a2 : • Energy : 90% of f • Length : 1/4 • a3 : • Energy : 87.89% of f • Length : 1/8

  10. Conservation and Compaction of Energy (3) • Cumulative energy profile :

  11. Conservation and Compaction of Energy (4) • 수학적 증명으로 보는 energyconservation

  12. Haar Wavelets (1) • 1-level haar wavelets • 성질 • 각각 energy가 1 • 평균값 0을 가진 두 값 사이에서 빠른 fluctuation으로구성 • 첫번째 haarwavelet 의 짝수 timetranslation

  13. Haar Wavelets (2) • Scalarproduct • 첫번째 fluctuationsubsignal d1 using haar wavelets : • 두번째 fluctuationsubsignal d2 using haar wavelets : • 1-levelhaar wavelets 을 가지고첫번째 fluctuation 표현 가능

  14. Haar Wavelets(3) • 1-level haar scaling signals • 1-levelhaar scaling signals을 가지고첫번째 trend 표현가능 : • 성질 • 각각 energy가 1 • 두개의 연속적인 time index로 구성된 support를 가짐 • 첫번째 haarscalingsignal 의 짝수 timetranslation

  15. Haar Wavelets(4) • 2-level haar scaling signals • 2-level trend • 2-level haar wavelets • 2-level fluctuation

  16. Multiresolution Analysis (1) • 두 signal 에 대해

  17. Multiresolution Analysis (2) • Basic idea of MRA • Signal f : a lower resolution signal(5,5,11,11,7,7,5,5)과 fluctuationsignal(-1,1,-1,1,1,-1,0,0)의 합으로 표현 에서 a1 ,a2,…,aN/2 과 d1 ,d2,…, dN/2 분리

  18. Multiresolution Analysis (3) • 2-level ofa MRA of a signal f • k-level ofa MRA of a signal f

  19. Multiresolution Analysis (4) • 10-levels of MRA

  20. Signal Compression (1) • Audio signal • Method of wavelet transform compression • Signal에 wavelet transform • Thresholding • Transform된 값의크기를 큰 값부터 정렬 • Threshold보다 작은 값은 0 • Transmit • Transformed data + significancemap (0 or 1) • Inverse wavelet transform

  21. Signal Compression (2) • Original signal을 복원하려면 energy의 99.99%이상이 포함되도록 threshold를선택해야 함 • 1024 : 51 ≒ 20 : 1 압축 4096 : 410 ≒ 10 : 1 (99.99% 이상이되려면 2.3 : 1 이상이 되야 함, 즉, 1782개 이상)

  22. Removing Noise (1) • Contaminated signal = original signal + noise • f = s + n • Randomnoise만 고려 • Noisesignal : highly oscillatory, 평균값위아래로 빠르게 변함 • Transform에 의해 originalsignal은 적은 개수의 높은 에너지로 집약되고 노이즈는 낮은 에너지를 가지게 됨 • Threshold method of wavelet denoising • s의 energy 측정 : 대부분의 에너지가 형성되는 thresholdTs > 0 찾음 • Noisesignal의 transform값을 모두 포함하는 Ts보다작은 thresholdTn 값 • Tn 값보다작은 값은 0 • Root Mean Square Error (RMS Error)

  23. Removing Noise (2) • RMS : 0.057 -> 0.011 0.057 -> 0.035

More Related