1 / 27

INFORMS - Boca

INFORMS - Boca. Design Strategies for Opaque and All-Optical DWDM Networks By Giray Birkan (SMU) Eli Olinick (SMU) Augustyn Ortynski (Nortel) Gheorghe Spiride (Nortel) Jeff Kennington (SMU). New Ideas. Considers Polarization Mode Dispersion Considers Uneven Hut Spacing

vesna
Télécharger la présentation

INFORMS - Boca

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. INFORMS - Boca • Design Strategies for Opaque and • All-Optical DWDM Networks • By • Giray Birkan (SMU) • Eli Olinick (SMU) • Augustyn Ortynski (Nortel) • Gheorghe Spiride (Nortel) • Jeff Kennington (SMU)

  2. New Ideas • Considers Polarization Mode Dispersion • Considers Uneven Hut Spacing • Considers a Cost Function With Detailed Equipment Types (amplifiers, regenerators, multiplexers etc.) • Considers 1+1 Protection • Considers 1+N Protection • Considers Moving Regenerators To Nodes

  3. AL BO SA CH SL PL NY OM SF CL LV DE IN WA KA RA NA ME LA PH AT DA EP HO JA NO TA SO Assume The Fiber Exist And Determine The Equipment Needed To Light It

  4. Legend Denotes an amplifier Denotes a regenerator A Origin Node Destination Node hut 3 OXC OXC hut 1 hut 2 hut 4 ג1 D M U X D M U X M U X M U X A A A A A A A ג20 (ג1 -ג20) (ג1 -ג20) TE TE A Simple Link With Amplification and Regeneration for 20 Wavelengths

  5. Optical Reach = 150 kmMax Spans = 4 Amplify in at most 150, Regen after at most 3 Amps

  6. link segment segment span span span Origin Node Destination Node A A A A 150km 150km 150km 150km 150km 150km A Link Architecture that Satisfies the Rule for a Link Budget of 150 km.

  7. Polarization Mode Dispersion (DPMD2)(dist) < K segment Origin Node O/E/O conversion Intermediate node 1 no O/E/O conversion Intermediate node 2 no O/E/O conversion Destination Node O/E/O conversion DPMD1 DPMD2 DPMD3 fiber type 1 fiber type 2 fiber type 3 d1 km d2 km d3 km (DPMD1)2(d1) + (DPMD2)2(d2) + (DPMD3)2(d3) < K

  8. Unequal Hut Spacing Link and segment span span span Amplification Glassthrough Amplification Origin Node O/E/O conversion Destination Node O/E/O conversion hut 1 hut 2 hut 3 62 km 64 km 55 km 73 km 119 km Amplification Requirements using a Link Budget of 120

  9. The DWDM Design Problem • Given the network topology with known hut locations, the point-to-point demands with known routings, and DPMD values associated with each span, determine the choice of an optimum link budget for each link and least cost equipment configuration to satisfy the point-to-point demands and polarization mode dispersion restrictions. • Extensions involve protection and network availability.

  10. The Two Design Strategies • Opaque Design – O/E/O Conversion At Every Node • All Optical Design – O/E/O Conversion Only When Required • {Link Budget and or PMD Determines O/E/O Conversion}

  11. {supply} { 0 } { d1 } { d2 } { dn } { dn+1 } Origin Node With Amplification hut 0 Destination Node With Amplification hut n+1 x0 x1 x2 x3 hut 1 hut 2 hut n y2 y1 yn yo yn+1 Sink {demand} { -∑idi } Hut Selection Network Model

  12. Opaque Design – Decomposes On Links • For each Link Budget, solve the IP to determine the huts where equipment will be located. Then determine the equipment configuration that must be placed in the huts. Calculate the link cost and save the best. • This requires solving (24)(|E|) small IPs – no big problem.

  13. All-Optical Design • Using the same huts, determine equipment for each o-d pair. That is, go as far as possible before regeneration. Then determine the equipment cost.

  14. hut 1 hut 2 hut 13 hut 14 hut 15 Node 1 112 112 76 3 75 75 75 25 5 65 100 120 hut 20 hut 29 65 hut 9 hut 21 90 distance 120 hut 28 65 hut 22 hut 10 80 65 hut 27 hut 23 120 70 65 hut 26 hut 11 hut 24 60 hut 4 hut 5 hut 6 hut 7 40 55 hut 17 hut 18 2 100 100 100 100 30 4 120 120 30 6 Example Network

  15. Equipment Cost • Equipment Wavelengths Cost/Unit • TE 1 75 • R 1 130 • A 1 – 20 100 • A 21 – 40 150 • A 41 – 80 200 • MUX/DMUX 1 – 20 120 • MUX/DMUX 21 – 40 180 • MUX/DMUX 41 – 80 240

  16. Demands For Example • Demand Demand Wavelengths Routing • Pair (o,d) In λs • (1,5) 35 1-35 1-3-5 • (1,6) 40 36-75 1-3-5-6 • (6,3) 30 76-105 6-4-3 • (2,5) 25 106-130 2-4-3-5 • (2,3) 70 131-200 2-1-3

  17. 1 3 5 2 4 6 Demand Routings

  18. 215 TEs Node 1 300 TEs Node 3 140 TEs Node 5 145 λ s 100 λ s 55 λ s 40 λ s 70 λ s 25 λ s 110 TEs Node 4 30 λ s 70 TEs Node 6 95 TEs Node 2 The Opaque Network Design (930TEs, 37As, 18 MUX/DMUX, Total Cost = 79,920)

  19. TE TE TE TE TE OXC OXC 40 A 80 A 80 A 80 80 A A TE Node 1 Node 2 Local Ports Local Ports TE TE TE TE TE OXC OXC 80 80 A A 40 A 80 A 80 A 20 A 80 A 40 A Local Ports Node 4 Node 3 TE TE Opaque Network Design for Nodes 1 - 4

  20. AL BO SA CH SL PL NY OM SF CL LV DE IN WA KA RA NA ME LA PH AT DA EP HO JA NO TA SO Figure 14. US Test Network

  21. Test Problems • Number Seed Demand Ave Total • Pairs # Hops Demand • 1 920 100 3.80 4053 • 2 378 100 3.92 4327 • 3 092 100 4.04 4028 • 18 816 250 3.81 9045 • 19 972 250 3.93 9072 • 20 680 250 4.01 9540

  22. Empirical Analysis • Prob Time Opaque All-Optical • In CPLEX Cost Time Time Cost Reduction • 1 22 sec 2.96M 279 sec 4 sec 32% • 2 16 3.22M 209 3 33% • 5 22 2.94M 273 4 34% • 8 16 4.52M 313 5 33% • 11 16 5.67M 251 5 33% • 14 23 5.95M 346 7 32% • 17 16 7.19M 273 6 33% • 20 23 sec 7.05M 380 sec 9 sec 32%

  23. CD4 CD1 WA1 OR1 CD2 CA3 CD3 CA4 IL1 NY3 CA5 WY1 IL2 UT1 NE1 NY1 NV1 NY2 CO1 IN1 IL3 OH1 DC1 KS1 CA2 CA1 MO1 NC1 GA3 GA2 TX2 TX5 GA1 TX3 TX1 TX4 16% Cost Savings North American Network

  24. Not used Working Protection 1 3 5 2 4 6 Unavailability 73 Min/Year Cost $43,120 Working and Protection Routings For 1+1 Dedicated Protection

  25. 1 3 5 2 4 6 Not used Working Protection #1 Protection #2 Unavailability 9.2 Min/Year Cost $ 65,720 Working and Protection Routings For 1+2 Dedicated Protection

  26. 1 3 5 2 4 6 Not used Working Protection #1 Protection #2 Protection #3 (Leased) Unavailability 8.3 Min/Year Owned $65,720 + Leased $14,663= Total $80,383 Working and Protection Routings For 1+3 Dedicated Protection

  27. 1 3 5 2 4 6 Not used Working Protection #1 Protection #2 Protection #3 (Leased) Protection #4 (Leased) Unavailability 8.3 Min/Year Owned $65,720 + Leased $31,925 = Total $97,645 Working and Protection Routings For 1+4 Dedicated Protection

More Related