1 / 25

G. Vasile , E. Trouvé, I. Petillot, Ph. Bolon, J.-M. Nicolas,

High Resolution SAR Interferometry: estimation of local frequencies in the context of Alpine glaciers. G. Vasile , E. Trouvé, I. Petillot, Ph. Bolon, J.-M. Nicolas, M. Gay, J. Chanussot, T. Landes and P. Grussenmeyer gabriel.vasile@univ-savoie.fr. Outlines. Context: InSAR high resolution

vianca
Télécharger la présentation

G. Vasile , E. Trouvé, I. Petillot, Ph. Bolon, J.-M. Nicolas,

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. High Resolution SAR Interferometry: estimation of localfrequencies in the context of Alpine glaciers G. Vasile, E. Trouvé, I. Petillot, Ph. Bolon, J.-M. Nicolas, M. Gay, J. Chanussot, T. Landes and P. Grussenmeyer gabriel.vasile@univ-savoie.fr LISTIC / TSI / GIPSA-lab / MAP-PAGE

  2. Outlines • Context: InSAR high resolution • Local frequencies estimation algorithm • Results and discussions • Low Resolution ERS TANDEM data • High Resolution simulated TS-X data • Conclusions and perspectives LISTIC / TSI / GIPSA-lab / MAP-PAGE

  3. Low Resolution (LR) vs. High Resolution (HR) LR – 80m LR+HR – 2m Mer-de-glace surface May 2004 Longitudinal elevation profiles along the Mer-de-glace (m) • Strong topography -> narrow fringes • Glacier microrelief -> HR component • Different surface penetration • Different orientations LISTIC / TSI / GIPSA-lab / MAP-PAGE

  4. STATIONARITY ERGODICITY Need for frequencies estimates - Estimation • Estimation of 2nd order moments : complex correlation • 3 directions for preserving the stationarity & ergodicity • Spatial support: boxcar, directional, region growing… • Appropriate estimator: ML, LLMMSE… • Compensation of deterministic phase components Trade-off: ergodicity/stationarity – number of samples ! LISTIC / TSI / GIPSA-lab / MAP-PAGE

  5. Need for frequencies estimates – 2D unwrapping Phase ambiguity • Wrapped phase: φ = Φ (mod 2π) • Nyquist criterion: | Φ(N) − Φ(M)| < π • Phase difference test for unwrapping: Phase difference -> phase gradient -> local frequency LISTIC / TSI / GIPSA-lab / MAP-PAGE

  6. Outlines • Context: InSAR high resolution • Local frequency estimation algorithm • Results and discussions • Low Resolution ERS TANDEM data • High Resolution simulated TS-X data • Conclusions and perspectives LISTIC / TSI / GIPSA-lab / MAP-PAGE

  7. Phase LR+HR model • Analytical phase signal: • : 2D sine-wave estimated on large square windows (*) • : 2D sine-wave Need of adaptive neighborhood Need of new estimation technique (*)E. Trouvé et al. “Improving phase unwrapping techniques by the use of local frequency”,IEEE Transactions on Geoscience and Remote Sensing, 36(6):1963-1972, 1998 LISTIC / TSI / GIPSA-lab / MAP-PAGE

  8. Intensity Driven Adaptive Neighborhood (IDAN) • 2-step region growing technique (*) • Driven simultaneously on all the intensities of the input data set; • AN makes it possible to reach the number of pixels necessary for reliable estimation; • AN preserves the stationarity since most of the sources of phase nonstationarityare revealed by the SAR intensity which is mostly influenced by the local slope. (*) G. Vasile et al. “Intensity-Driven-Adaptive-Neighborhood Technique for Polarimetric and Interferometric SAR Parameters Estimation”. IEEE Transactions on Geoscience and Remote Sensing, 44(5):1609-1621, 2006 LISTIC / TSI / GIPSA-lab / MAP-PAGE

  9. Estimation of the local frequency • 2D phase model: • Estimation technique based on the autocorrelation function: under stationarity and phase noise iid hypothesis  K real • Step 1: estimation of on the Np,q available pixel pairs • Step 2: estimation of the local frequency: LISTIC / TSI / GIPSA-lab / MAP-PAGE

  10. 2D - LR local frequencies SAR intensities LR MUSIC Frequency Estimation LR Freq. Compensation 2D - HR local frequencies HR - IDAN Frequency Estimation SAR phase Algorithm implementation Local compensation of LR deterministic geometrical phase component The resulting phase signal exhibits the local differences between the 2D sine-wave model and the real HR fringe pattern LISTIC / TSI / GIPSA-lab / MAP-PAGE

  11. Outlines • Context: InSAR high resolution • Local frequency estimation algorithm • Results and discussions • Low Resolution ERS TANDEM data • High Resolution simulated TS-X data • Conclusions and perspectives LISTIC / TSI / GIPSA-lab / MAP-PAGE

  12. TANDEM ERS data set LUT masteramplitude phase LR fringe orientation HR fringe orientation Mer-de-glace glacier [C-band, 5-looks, 768x489 pixels, 20x20 m, ea=45m] LISTIC / TSI / GIPSA-lab / MAP-PAGE

  13. TANDEM ERS data set LUT masteramplitude phase IDANfiltered phase LR+HR fringe orientation Mer-de-glace glacier [C-band, 5-looks, 768x489 pixels, 20x20 m, ea=45m] LISTIC / TSI / GIPSA-lab / MAP-PAGE

  14. TANDEM ERS data set LUT LR+HRfringe orientation phase ROI-PACfiltered coherence IDAN filtered coherence Mer-de-glace glacier [C-band, 5-looks, 768x489 pixels, 20x20 m, ea=45m] LISTIC / TSI / GIPSA-lab / MAP-PAGE

  15. TerraSAR-X application (a) (b) The Mer-de-glace glacier: (a) Aerotriangulation, (b) DTM 2mx2m. LISTIC / TSI / GIPSA-lab / MAP-PAGE

  16. TerraSAR-X application Descending pass simulation 1.2x2m, αin=30, H=514km Slant range sampling of the SAR intensity Slant range sampling of the elevation (linear interpolation) LISTIC / TSI / GIPSA-lab / MAP-PAGE

  17. TerraSAR-X application Simulated HR SAR amplitude: σ2=1 (speckle variance), 1.2x2m Real LR ERS SAR amplitude: 20x20m LISTIC / TSI / GIPSA-lab / MAP-PAGE

  18. TerraSAR-X application Simulated HR SAR amplitude: σ2=1 (speckle variance), 1.2x2m Simulated HR SAR phase: ea=10m, uniform phase noise distribution ±π/4 LISTIC / TSI / GIPSA-lab / MAP-PAGE

  19. TerraSAR-X application LUT LR map:fringe orientation Simulated HR SAR phase: ea=10m, uniform phase noise distribution ±π/4 LISTIC / TSI / GIPSA-lab / MAP-PAGE

  20. TerraSAR-X application LUT LR map:fringe orientation LR+HR map:fringe orientation LISTIC / TSI / GIPSA-lab / MAP-PAGE

  21. TerraSAR-X application LUT LR+HR map:fringe orientation IDAN LR+HR filtered phase LISTIC / TSI / GIPSA-lab / MAP-PAGE

  22. TerraSAR-X application LUT 50m spatial profile along the surface of the Mer-de-glace glacier: real altitude resampled in the TerraSAR-X slant range, unwrapped HR+LR estimates of the local frequencies, unwrapped LR estimates of the local frequencies. May 2004Photo of the simulated TerraSAR-X region on the Mer-de-glace glacier (approximate position of the profile) LISTIC / TSI / GIPSA-lab / MAP-PAGE

  23. Conclusions and perspectives Conclusions: • HR frequency estimation combined with intensity driven adaptive neighborhood; • estimate local frequencies within HR interferograms; • measure the local topographic variations in interferograms with a small altitude of ambiguity. Future directions: • Chamonix – Mont Blanc glacier monitoring by D-InSAR, • New context: POL-InSAR airborne data. LISTIC / TSI / GIPSA-lab / MAP-PAGE

  24. E-SAR Campaign Argentière: Oct./06 & Feb./07 LISTIC / TSI / GIPSA-lab / MAP-PAGE

  25. Thank you! This work was supported by the French national project ACI-MEGATOR. The authors wish to thank the European Space Agency for providing the SAR data through the Category 1 proposal No.3525. LISTIC / TSI / GIPSA-lab / MAP-PAGE

More Related