1 / 13

Kristian Berland, Per Hyldgaard, Chalmers University of Technology APS March meeting

Kristian Berland, Per Hyldgaard, Chalmers University of Technology APS March meeting March 18, 2013. A5: Analyzing the vdW-DF description of binding mechanisms: Comparison of C60 and benzene adsorption on graphene. arxiv.org/abs/1303.0389. Compare benzene and C60 adsorption.

Télécharger la présentation

Kristian Berland, Per Hyldgaard, Chalmers University of Technology APS March meeting

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Kristian Berland, Per Hyldgaard, Chalmers University of Technology APS March meeting March 18, 2013 A5: Analyzing the vdW-DF description of binding mechanisms: Comparison of C60 and benzene adsorption on graphene arxiv.org/abs/1303.0389

  2. Compare benzene and C60 adsorption Same interface Different volume • Analyze vdW-DF • Compare vdW-DF variants K. Berland (berland@chalmers.se) P. Hyldgaard arxiv.org/abs/1303.0389

  3. Benzene and C60 binding curves Difference between binding curve of benzene and C60: • vdW-DF1 stronger non-local correlation interaction than vdW-DF2 Semi-local part • C60 binds more than benzene • Results sensitive to functional version • vdW-DF1 binds more than vdW-DF2 non-local correlation part K. Berland (berland@chalmers.se) P. Hyldgaard arxiv.org/abs/1303.0389

  4. Separation decomposition bz-graphene 3.6 Å) • Decompose non-local correlation Short separations: vdW-DF1 and vdW-DF2 similar C60 and benzene similar Long separations: Systems and vdW-DFs differ C60-graphene 3.6 Å) K. Berland (berland@chalmers.se) P. Hyldgaard arxiv.org/abs/1303.0389

  5. Low-density regions dominate 2 % • Remove low-density regions first • Peel off 2 % of total density → 15% of van der Waals interaction lost • Peel off 8 % of total density → 65% of van der Waals interaction lost 8% Benzene-graphene sep. 3.0 Å K. Berland (berland@chalmers.se) P. Hyldgaard arxiv.org/abs/1303.0389 K. Berland (berland@chalmers.se) P. Hyldgaard arxiv.org/abs/1303.0389 K. Berland (berland@chalmers.se) P. Hyldgaard arxiv.org/abs/1303.0389

  6. Site energy sensitivity Surface barriers very sensitive to functional variant K. Berland (berland@chalmers.se) P. Hyldgaard arxiv.org/abs/1303.0389

  7. Sensitivity arise indirectly from separation • Surface barriers very sensitive to functional variant • Surface barriers insensitive to functional variant at given separation Functional Separation Surface Barriers K. Berland (berland@chalmers.se) P. Hyldgaard arxiv.org/abs/1303.0389

  8. Summary • Benzene and C60 on graphene differ because of van der Waals forces • vdW-DF: several exchange-variants, two correlation versions • Non-local correlation of vdW-DF1 and vdW-DF2 similar for short density separations, differ at large. • Low-density regions essential for non-local correlation. • Surface site variation very sensitive to functional because functional sets separation Barriers Functional Separation Phys. Rev. B 84, 155451 (2011) Kristian Berland (berland@chalmers.se) arxiv.org/abs/1303.0389

  9. Learning about xc-functional Functional • Learn about non-local correlation by comparing C60 and benzene • Use corrugation measurements to given learn about xc-functional Diffusion barriers Functional Separation Diffusion barriers K. Berland (berland@chalmers.se) P. Hyldgaard arxiv.org/abs/1303.0389

  10. C60 dipole formation Small dipole on C60 on graphene Rich dipolar structure Small effect on binding (compare to adsorption on BN) Phys. Rev. B 84, 155451 (2011) K. Berland (berland@chalmers.se) P. Hyldgaard arxiv.org/abs/1303.0389

  11. Adsorption results • BN and graphene similar • vdW-DF1 best adsorption energies • Optimal sites: bz on G: top(AB) bz on BN: top-N (AB) C60 on G: top-rot C60 on BN: top-N-rot • What do we learn? a) PRB. 69 155406 (2004) b) PRL. 90, 095501 (2003) K. Berland (berland@chalmers.se) P. Hyldgaard arxiv.org/abs/1303.0389

  12. Low-density regions dominate • Introduce low-density cutoff • Relate to density fraction removed 1.6% 8% Benzene-graphene sep. 3.0 Å K. Berland (berland@chalmers.se) P. Hyldgaard arxiv.org/abs/1303.0389 K. Berland (berland@chalmers.se) P. Hyldgaard arxiv.org/abs/1303.0389 K. Berland (berland@chalmers.se) P. Hyldgaard arxiv.org/abs/1303.0389

  13. xc-functionals contribution to binding curve • Separation mostly set by exchange-variant • Binding energy depends correlation version • Curves can be related to separation Kristian Berland (berland@chalmers.se) arxiv.org/abs/1303.0389

More Related