1 / 15

“ Nuovi risultati sui sistemi splicing lineari finiti ” Palermo, 13/15 Febbraio 2003

“ Nuovi risultati sui sistemi splicing lineari finiti ” Palermo, 13/15 Febbraio 2003. Paola Bonizzoni, Clelia De Felice, Giancarlo Mauri, Rosalba Zizza Dipartimento di Informatica Sistemistica e Comunicazioni, Univ. of Milano - Bicocca, ITALY

wendyreese
Télécharger la présentation

“ Nuovi risultati sui sistemi splicing lineari finiti ” Palermo, 13/15 Febbraio 2003

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. “Nuovi risultati sui sistemi splicing lineari finiti”Palermo, 13/15 Febbraio 2003 Paola Bonizzoni,Clelia De Felice,Giancarlo Mauri, Rosalba Zizza Dipartimento di Informatica Sistemistica e Comunicazioni, Univ. of Milano - Bicocca, ITALY Dipartimento di Informatica e Applicazioni, Univ. of Salerno, ITALY

  2. In the following… Finite linear splicing system: SPA = ( A, I, R) with A, I, R finite sets Characterize regular languages generated by finite linear Paun splicing systems Problem 1 Given L regular, can we decide whether L  H(FIN,FIN) ? Problem 2

  3. Reflexive splicing system [Handbook 1996] SPA= (A, I, R) finite + (reflexive hypothesis on R) u1| u2 $ u3 | u4 R  u1| u2 $ u1| u2,u3 | u4$ u3 | u4 R Remark [Handbook 1996] Finite Paun splicing system, reflexive and symmetric Finite Head splicing system

  4. Main result 1 The characterization of reflexive Paun splicing languages by means of • finite set of (Schutzenberger) constants C • finite set of factorizations of these constants into 2 words FINITE UNION OF Reflexive Paun splicing languages languages containing constants in C  languages containing mixed factorizations of constants

  5. Pixton (and 2) mapping of some pairs of constants into a word Pixton languages containing images of constants

  6. The characterization of Head splicing languages Main result 3 Reflexive Paun splicing languages Reflexive and “transitive” Paun splicing languages Headsplicing languages FINITE UNION OF Head splicing languages languages containing constants in C  languages containing “constrained” mixed factorizations of constants

  7. LINEAR SPLICING DNA Strand 2 DNA Strand 1 restriction enzyme restriction enzyme ligase enzyme ligase enzyme

  8. Paun’s linear splicing operation (1996) r = u1| u2 $ u3 | u4 rule : (x u1u2 y, wu3u4z) (x u1 u4z , wu3 u2 y) sites u1 u2 u3 u4 x y Pattern recognition w z u1 u4 x z cut u2 u3 y w paste u1 u4 u3 u2 y x z w

  9. Paun’s linear splicing system (1996) SPA= (A, I, R) A=finite alphabet; I A*initial language; RA*|A*$A*|A*set of rules; L(SPA) = I  (I)  2(I)  ... = n0 n(I) splicing language Example (aab , aab)= (aaaab, b) (aa)*b =L(SPA) , I={b, aab} , R={1| b$ 1| aab} H(F1, F2) = {L=L(SPA) | SPA = (A,I,R), IF1, R  F2, F1, F2 families in the Chomsky hierarchy} Known results [Head, Paun, Pixton,Handbook of Formal Languages, 1996] H(F1, F2) { L | L=L(SPA), I regular, R finite } = Regular { L | L=L(SPA), I, R finite sets }  Regular (aa)*  L(SPA) (proper subclass)

  10. Computational power of splicing languages and regular languages:a short survey… • Head 1987 (Bull. Math. Biol.): SLT=languages generated by Null Context splicing systems (triples (1,x,1)) • Gatterdam 1992 (SIAM J. of Comp.): specific finite Head’s splicing systems • Culik, Harju 1992 (Discr. App. Math.): (Head’s) splicing and dominolanguages • Kim 1997 (SIAM J. of Comp.): from the finite state automaton recognizing I to the f.s.a. recognizing L(SH) • Kim 1997 (Cocoon97): given LREG, a finite set of triples X, we can decide whether  IL s.t. L= L(SH) • Pixton 1996 (Theor. Comp. Sci.): if F is a full AFL, then H(FA,FIN)  FA • Mateescu, Paun, Rozenberg, Salomaa 1998 (Discr. Appl. Math.): simple splicing systems (all rules a|1 $ a|1, aA); we can decide whether LREG, L= L(SPA ), SPA simple splicing system. • Head 1998 (Computing with Bio-Molecules): given LREG, we can decide whether L= L(SPA ) with “special” one sided-contexts rR:r=u|1 $ v|1 (resp. r=1|u $ 1|v), u|1 $ u|1R (resp.1|u $ 1|uR) • Head 1998 (Discr. Appl. Math.): SLT=hierarchy of simple splicing systems • Bonizzoni, Ferretti, Mauri, Zizza 2001 (IPL): Strict inclusion among finite splicing systems Head 2002 Splicing systems: regular languages and below (DNA8)

  11. Main Difficulty Rules for generating... c c v’ v v’ u v z u u’ c v u z TOOLS: Automata Theory • Syntactic Congruence (w.r.t. L) [x] Context of x and x’ x L x’  [ w,z A* wxz  L  wx’z L]  C(x,L) = C(x’,L) L regular  M (L) finite syntactic monoidM(L)= A*/L • Minimal Automaton • Constant[Schützenberger, 1975] w  A* is a CONSTANT for a language L if C(w,L)=Cl (w,L)  Cr (w,L) Left context Right context

  12. Partial results [Bonizzoni, De Felice, Mauri, Zizza (2002)] L=L(A) ,A= (A, Q,, q0 ,F) minimal Marker w[x] [x] deterministic > qF w > > q0 > > only here > L(w[x])={y’1wx’ y’2 L|(q0 ,y’1 w x’ y’2)=qF, x’  [x]}finite splicing language Marker Language • Note that we can • ERASE Locally reversible Hypotheses, • - qF  F

  13. Reflexive splicing system [Handbook 1996] L is a reflexive splicing languageL=L(SPA), SPA reflexive splicing system Theorem [Head, Splicing languages generated by one-sided context (1998)] L is a regular language generated by a reflexive SPA=(A, I, R) , where rR:r=u|1 $ v|1 (resp. r=1|u $ 1|v)   finite set of constants F for L s.t. the set L\ {A*cA* : c  F} is finite • We can decide the above property, • but only when ALL rules are either r=u|1 $ v|1or r=1|u $ 1|v

  14. Our result [Bonizzoni, De Felice, Mauri, Zizza] • LemmaL is a regular reflexive splicing language  finite splicing system • SPA=(A, I, R) s.t. L=L(SPA) and each site is a constant for L • TheoremL is a regular reflexive splicing language  L is a split-language. Not only one-sided contexts Extend Head’s result Alternative, constructive, effective proof for constant languages Reflexive splicing languages Decidability property Marker languages Contain some constant languages, but also reflexive splicing languages

  15. Split-languages T finite subset of N, {mt |mt is a constant for a regular language L, t  T} Constant languageL(mt) = {x mt y L| x,yA*} Lis a split languageL = X  t  T L(mt)(j,j’)L(j,j’) Finite set, s.t. no word in X has mt as a factor Union of constant languages mt m(j,1) m(j,2) L1m tL2 = L1 m(j,1) m(j,2) L2 L1 m(j,1) m(j’,2) L’2  L’1m(j’,1) m(j,2) L2 m(j’,1) m(j’,2) L’1m t’L’2 = L’1m(j’,1) m(j’,2) L’2 mt’

More Related