1 / 19

Radiation Shielding Design of NSLS2

Radiation Shielding Design of NSLS2. P.K. Job Conventional Facilities Advisory Committee Review May 8 , 2007. Preliminary Shielding Design Documents. 1. Linac, NSLS II- TN 12 2. Booster & Storage Ring, NSLS II – TN 13 3. Storage Ring Supplemental Shielding – TN 21

whitney
Télécharger la présentation

Radiation Shielding Design of NSLS2

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Radiation Shielding Design of NSLS2 P.K. Job Conventional Facilities Advisory Committee Review May 8 , 2007

  2. Preliminary Shielding Design Documents 1. Linac, NSLS II- TN 12 2. Booster & Storage Ring, NSLS II – TN 13 3. Storage Ring Supplemental Shielding – TN 21 4. Beamlines and Front Ends, NSLS II – TN 14 5. Ray Tracing Standards, NSLS II – TN 20 6. Activation Analysis, NSLS II – TN 15 & 16

  3. Radiation Safety Review • March 27 – 28, 2007 • Membership • S. Rokni (Chair) – SLAC • R. Donahue – ALS • P. Berkvens – ESRF • D. Beavis – BNL • C. Schaefer - BNL

  4. Radiation Safety Review • Committee reviewed: • Shielding methodology & assumptions • Interlocks, Critical Devices, and Area Radiation Monitoring plans. • Committee concluded: “Given the status of the project, the design of the bulk shielding of the accelerator complex is well developed and is based on sound principles and reasonable assumptions. “

  5. Desired Shielding Outcome • Compliance with DOE Orders, Part 835, and BNL Administrative Controls • < 25 mRem/year (.25 mSv) on-site to non-NSLS-II personnel; < 5 mrem/year (0.05 mSv) at site boundary • Radiation exposure to users and staff ALARA – an administrative control level of 100 mRem/year (1 mSv) is desired • We plan to achieve this through shielding and engineering controls; & supplemental administrative controls • Based on current experience, we expect annual radiation exposures < < 100 mRem/year (1 mSv) to NSLS staff and users • After verification, we expect short-term visitors will not be required to have dosimeters routinely

  6. Shielding Policy • Accelerator and beam line enclosures will be shielded to reduce exposure at the exterior surface of the shield during typical operation to 0.25 mRem/hr (2.5 uSv) in normally occupied areas to limit the maximum exposure to 500 mrem/year (5 mSv) (assuming 2000 hours occupancy). • The storage ring outer wall will be shielded to 0.5 mRem/hr (5 uSv/hr) in direct contact with exterior; no full-time occupancy is expected or will be permitted within 1 meter of wall. • This policy satisfies DOE Design Goals identified in 10 CFR 835.1002

  7. Radiation Sources Consideredfor calculations • Bremsstrahlung (High Energy Photons) • Bremsstrahlung produced Neutrons • Synchrotron Radiation (Low Energy x-rays)

  8. Bulk Shielding Calculation Methodology

  9. Dose Equivalent Factors used for Calculations(Thick Target Approximation)

  10. Radiation Attenuation FactorsUsed in Calculations

  11. Accelerator Operating Conditions used in Calculations • Linac • 200 MeV • 20 nA • Booster • 3.5 GeV • 15 nC per pulse • 1 pulse / minute (typical operation) • 1 hz operation for 500 hours per year considered • Storage Ring • 3.6 GeV • 500 mA

  12. Beam Loss Assumptions during Normal Operations • Linac – 1% distributed loss at 200 MeV • Linac to Booster injection efficiency – 50% • Booster losses – 2% loss at any point at 3.5 GeV • Booster to storage ring injection efficiency – 80% • Non-injection region – 10% of stored beam losses at any point • Stops in linac and booster designed for 100% loss at 1 hz

  13. LINAC Bulk Shielding Estimates

  14. Booster Bulk Shielding Estimates1 1 The Inboard and Outboard walls are at 1 m and the roof at 2 m from the beam 2 Supplemental lead shielding will be required around injection septum for 1 hz operation Booster shielding still in progress as adjacent occupancies are under discussion.

  15. Storage Ring Bulk Shielding Estimates

  16. Storage Ring Bulk Shielding Estimates

  17. LINAC - Credible Radiation Incidents • 100 % of maximum accelerated beam is lost at some location in the linac enclosure, (20 nC/s is continuously lost) Dose Rate = 37.5 mRem/h (0.37 mSv/h) (at the exterior of shield on contact) • 100 %injected beam to the booster is continuously lost at the linac-booster injection septum at 1 Hz. Dose Rate = 30 mRem/h (0.3 mSv/h) Mitigation/ control to prevent significant exposure • Area Radiation Monitors with beam shut off capability • Beam current monitors in the LINAC • Additional supplementary shielding at the septum/stop (lead/poly) • Operating procedures for operators during injection

  18. Storage Ring (Credible Radiation Incidents) • 100 % injected beam from the booster to storage ring is lost at any location in the storage ring (15 nC/s is continuously lost at some location other than injection region) Dose Rate = 300 mRem/h (3 mSv/h) (at the exterior of the experimental floor wall on contact) • 100 % injected beam from the booster to storage ring is lost at any beamline front end due the shorting of a bending magnet (15 nC/s is continuously lost at a front end component) Dose Rate = ~ 500 mRem/h (4 mSv/h) (at the exterior of the ratchet wall ~ 0.5 m from the FE) (peak bremsstrahlung shielded with shadow shields) • 100% of stored beam is lost at a point - ~ 8 mRem (0.08 mSv) Mitigation/controls to prevent significant exposure • Area Radiation Monitors with beam shut off capability • Beam loss monitors inside the Storage Ring • Additional Supplementary Shielding (Shadow Shields) • Operating procedures for operators defining actions during injection

  19. Bulk Shielding Comparison

More Related