200 likes | 401 Vues
AMANDA. A ntarctic M uon A nd N eutrino D etector A rray. Brady Garvin. AMANDA. A ntarctic M uon A nd N eutrino D etector A rray. Scientific Motivation AMANDA is a project designed to use the Antarctic ice as a medium for detecting muons and neutrinos in an effort to learn:
E N D
AMANDA Antarctic Muon And Neutrino Detector Array Brady Garvin
AMANDA Antarctic Muon And Neutrino Detector Array Scientific Motivation AMANDA is a project designed to use the Antarctic ice as a medium for detecting muons and neutrinos in an effort to learn: The acceleration mechanisms that bring cosmic rays to very high energies, including possible proton blazars and gamma ray bursters, GRBs The mass of the neutrino, still unsettled Whether neutralinos, supersymmetric particles, exist About entirely unexpected phenomena
AMANDA Antarctic Muon And Neutrino Detector Array Markarian 421 Markarian 501
AMANDA Antarctic Muon And Neutrino Detector Array GRB970228 (3:58:54 exposure)
AMANDA Antarctic Muon And Neutrino Detector Array Neutrino massing If GRBs are observed to emit neutrinos, the signature of a GRB will indicate a range of acceptable neutrino masses, hopefully narrowing the possibilities even further.
AMANDA Antarctic Muon And Neutrino Detector Array Neutralinos It is theorized that every particle has a supersymmetric particle, which dark matter may be composed of. The supersymmetric neutrino is the neutralino, which results in neutrino emission when it annihilates. Such neutralinos could be trapped by the gravity of the earth or sun and therefore AMANDA will look for neutrinos which fit the supersymmetric model’s predictions coming from the centers of these objects.
AMANDA Antarctic Muon And Neutrino Detector Array Reasons for AMANDA in Antarctic ice: NSF infrastructure Drilling team Machine shop Laboratory Continuously accessible for more than ¼ of the year. No background light (not even bioluminescence) No need for very long cabling Transparency of ice
AMANDA Antarctic Muon And Neutrino Detector Array
AMANDA Antarctic Muon And Neutrino Detector Array Other additional benefits of Antarctic ice: Optics of ice optimum around maximum quantum efficiency of PMTs Noise only around 1 KHz 2 km strings of PMTs can be drilled into ice in 6 days. Array is expandable
AMANDA Antarctic Muon And Neutrino Detector Array First String PMT testing: 73 of 80 8” PMTs survived the refreeze of Antarctic ice (drilling used hot water); none showed failure for the first three years. Optically fed emitter balls demonstrated the ice had an absorption length of nearly 300m, about 10 times longer than had been measured in laboratory experiments with pure ice! Optically damaging bubbles were detected at a lower rate than expected, mainly due to a slightly higher conversion rate into so-called air-hydrate crystals.
AMANDA Antarctic Muon And Neutrino Detector Array Capabilities of AMANDA A: Measuring of neutrino flood energies Neutrino floods often occur in stellar collapses, like supernova 1987A, only about 26000 light-years away, would increase counts by 100 counts/s. Measuring of total cascade energy AMANDA A is now being calibrated for measurement of electromagnetic shower energy.
AMANDA Antarctic Muon And Neutrino Detector Array AMANDA B test string: 79 of the 86 upgraded PMT’s survived refreeze Noise is down to about 400 Hz with new PMT’s Time resolution accurate to 3 ns 8 coincidence setup Automatic nitrogen laser diagnostic Below the layer where bubbles are still gaseous Advanced burst trigger Radio link to RICE
AMANDA Antarctic Muon And Neutrino Detector Array
AMANDA Antarctic Muon And Neutrino Detector Array Test String B results: Complete determination of muon trajectories Matched light velocity data with lab measurements of light through ice
AMANDA Antarctic Muon And Neutrino Detector Array AMANDA B: 289 of the 302 upgraded PMT’s survived refreeze Mean time between PMT failure >300 years Sub-ice power supply High-intensity nitrogen laser diagnostic Radio data link 18 analog optic fiber modules Two digital PMT waveform transmitters Signal resolution to 1 ns for optic fiber modules.
AMANDA J. Ahrens 11, G. Barouch 7, S. W. Barwick 5, X. Bai 12, K. Becker 8, R. Bay 4, L. Bergström 3, E. Bernadini , D. Bertrand 13, D. Besson 14, A. Biron 2, S. Boeser 2, O. Botner 15, A. Bouchta , O. Bouhali 13, M. Boyce , T. Burgess 3, T. Castermans , W. Chinowsky 10, D. Chirkin 4, J. Conrad 15, J. Cooley 7, C. Costa , D. F. Cowen 6, C. DeClercq 13, P. Desiati 7, J. Dewulf 13, T. DeYoung 7, P. Doksus 7, J. Edsjö 3, A. Ekesson 15, P. Ekström 3, . Fahlke Jorrit 15, T. Feser 11, O. Franzen 11, J. Frere , T. Gaisser 1, M. Gaug 2, L. Gerhardt 5, A. Goldschmidt 10, A. Hallgren 15, K. Hanson 6, F. Halzen 7, R. Hardtke 7, T. Hauschildt 2, M. Hellwig 11, P. Herquet , G. Hill 7, B. Hughey 7, P. O. Hulth 3, K. Hultqvist 3, S. Hundertmark 5, J. Jacobsen 10, A. Karle 7, B. Koci 7, L. Koepke 11, M. Kowalski 2, I. Kravchenko 14, K. Kuehn 5, J. Lamoureux 10, H. Leich 2, I. Liubarsky 7, M. Leuthold 2, D. M. Lowder 4, J. Ludvig 10, J. Madsen 7, P. Marciniewski 15, H. Matis 10, T. Miller 1, Y. Minaeva 3, P. Mock 5, R. Nahnhauer , F. M. Newcomer 6, R. Morse 7, T. Neunhoeffer 11, P. Niessen 13, D. Nygren 10, P. Olbrechts 13, R. Paulos 7, C. Pérez de los Heros 15, A. Pohl , R. Porrata , P. B. Price 4, G. Przybylski 10, K. Rawlins 7, E. Resconi , W. Rhode 8, M. Ribordy 2, S. Richter 12, J. Rodriguez Martino 3, D. Ross 5, H. Sander 11, T. Becka 11, T. Schmidt 2, D. Schneider 7, E. Schneider 5, R. Schwarz 12, A. Silvestri 5, M. Solarz 4, G. Spiczak , C. Spiering 2, I. Stancu , N. Starinski 12, D. Steele 7, P. Steffen , R. Stokstad 10, O. Streicher , P. Sudhoff 2, I. Taboada 6, T. Thon 2, S. Tilav 1, C. Walck 3, C. Weinheimer 11, C. Wiebusch 2, R. Wischnewski 2, H. Wissing 2, K. Woschnagg 4, W. Wu 5, Y. Yan 5, G. Yodh 5, C. Wiedemann 3, . Wuppertal Group 8 [1] Bartol Research Institute, University of Delaware, Newark, DE, USA[2] DESY-Zeuthen, Zeuthen, Germany[3] Dept. of Physics, Stockholm University, Stockholm, Sweden[4] Dept. of Physics, UC Berkeley, Berkeley, CA, USA[5] Dept. of Physics, UC Irvine, Irvine, CA, USA[6] Dept. of Physics, University of Pennsylvania, Philadelphia, PA, USA[7] Dept. of Physics, University of Wisconsin, Madison, WI, USA[8] Dept. of Physics, University of Wuppertal, Wuppertal, Germany[9] Dept. of Technology, University of Kalmar, Kalmar, Sweden[10] Lawrence Berkeley Laboratory, Berkeley, CA, USA[11] Mainz University, Mainz, Germany[12] South Pole Station, Antarctica[13] ULB - IIHE - CP230, Boulevard du Triomphe, B-1050 Bruxelles, Belgium[14] University of Kansas, Lawrence, KS, USA[15] University of Uppsala, Uppsala, Sweden
AMANDA Antarctic Muon And Neutrino Detector Array
AMANDA Antarctic Muon And Neutrino Detector Array
AMANDA Antarctic Muon And Neutrino Detector Array (Cosmic Rays In Southern Ice Search)