1 / 16

Probing the medium with photons

This research outlines the investigation of the medium using photons as a probe. It covers the suppression of π0 and η, the behavior of heavy quarks, baryons and mesons, and jet-like azimuthal correlations in different collision experiments. The motivation, experimental setup, and results are discussed, highlighting the potential for a calibrated probe of the quark-gluon plasma.

wrightr
Télécharger la présentation

Probing the medium with photons

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Probing the medium with photons Outline: • Introduction • Motivation • Experiment • Results • Conclusion Saskia Mioduszewski Ahmed Hamed LBNL 21-05-07

  2. Probing the mediumHigh-pT Spectra I – Light quarks and gluons Mid-rapidity Statistical Method Photons • The suppression of 0,s and ,s is very similar. suppression occurs at the parton level. PHENIX, QM05 • The binary scaling of direct photons is strong evidence that suppression is not an initial state effect. Gluons dominance at mid-rapidity at RHIC energy. 2 ^ <E>  sCxqL “Static medium” LBNL 21-05-07

  3. Probing the mediumHigh-pT Spectra II– Heavy quarks and gluons Non photonic electrons-Charm and Beauty • QCD is flavor independent, but heavy quarks at same pT are moving much slower than light quarks. Expected “dead-cone” with no induced gluon radiation. nucl-ex/0607012 • single-particle suppression in AuAu is strong evidence for the hot and • dense medium formation. • single-particle suppression does not constrain the mechanism of energy loss. LBNL 21-05-07

  4. Probing the mediumHigh-pT Spectra III– quarks and gluons Baryons and Mesons STAR QM05 and nucl-ex/0601042 • Clear meson-baryon yield differences at intermediate pT . • No reduction is observed in the baryon/meson ratio as expected in the gluon dominance picture. • Calibrated probe of the QGP is needed for better understanding of energy loss. LBNL 21-05-07

  5. Probing the mediumJet-like azimuthal correlations ? Charged hadrons • Near-side: p+p, d+Au, Au+Au is similar. • Back-to-back: Au+Au strongly suppressed relative to p+p and d+Au. Suppression of the back-to-back correlation in central Au+Au is a final-state effect • Surface bias for the trigger particle. • Trigger particle with no surface bias is required for better quantitative measurements of the away-side modifications. LBNL 21-05-07 LBNL 21-05-07

  6. Introduction Summary Four multipurpose experiments (BRAHMS, PHENIX, PHOBOS, STAR) • Empirical lines of evidence: Energy density well beyond critical value. Large elliptic flow. Jet quenching. dAu control experiment. • Interpreted in terms of a strongly coupled QGP and a new QCD state (?) Color Glass Condensate Required: • Better understanding for the energy loss mechanism! • Direct Photons: Doesn’t couple to the medium. • QGP thermal photons. • Elliptic flow. • Test for binary scaling for hard process. • Gamma-charged hadrons correlation. • Challengeable measurements! LBNL 21-05-07

  7. Motivation LODirect photons schematic view thermal: Decay photons hard: • single-particle suppression does not effectively constrain detailed energy-loss pictures. direct component Bremsstrahlung fragmentation component • Gamma-charged hadrons correlation. • Calibrated probe of the QGP – at LO. • No Surface Bias • Hard process • Possible candidate for quark/gluon jet discrimination at LO. LBNL 21-05-07

  8. ExperimentSTAR Detector • Tracker detectors(slow), Trigger detectors(fast), and Calorimeters(fast). • Measurements of hadrons production over a large solid angle. • STAR BEMC can probe for further higher transverse energy. LBNL 21-05-07

  9. Experiment STAR BEMC • Sampling calorimeter. • Lead-scintillator detector. • 120 modules. • Projective towers. • 4800 channels • SMDs: 36000 channels • PreShower: 4800 channels West side 0<<1 Cross-section in  Cross-section in  • BEMC face is ~2.2m away from the point of interaction at =0. LBNL 21-05-07

  10. Experiment Electromagnetic Shower -plane -plane • Electromagnetic transverse shower characteristics • High energy core. • Low energy halo. LBNL 21-05-07

  11. Results QM 2005 Inclusive g-jet in Au+Au at s=200GeV SIMULATION (pp) STAR Preliminary Thomas Dietel Quark Matter 2005 • Simulation shows no associated particles in -charged correlation. • The background is higher for central events. • Away-side decreases with increasing centrality. • Decrease in near-side due to the increased fraction of prompt photons. • Need /0 discrimination. LBNL 21-05-07

  12. Results QM 2006 pp at s=200GeV STAR Preliminary S. Chattopadhyay Quark Matter 2006 • Reduction in near angle peak towards photon Bin. • Effect is more prominent for larger Ettrigger . • Away-side yield is reduced. LBNL 21-05-07

  13. Results Transverse Shower Profile • Clear structure for the two showers in  and 0 at moderate energy. • 0 shower at high energy is still wider than the single photon shower. • Clear sensitivity to the halo region. • Could be used to distinguish 0/ LBNL 21-05-07

  14. ResultsRaw correlation function 0 Et_trg>12GeV 1 /c  /c Ntrg (rad) (rad) cucu 0-10% Et_trg>6GeV /c /c (rad) (rad) dN Y-axis: d () • Similar Away-side for 0 and  Preliminary • Reduction in the near-side for  compared to 0. • Reduction is more noticeable at higher Et_trg and also at higher centrality bins. LBNL 21-05-07

  15. Conclusion • -charged hadrons correlation is very promising tool for better understanding of the medium. • Shower shape study is required for direct photons identification. • Promising study for transverse shower profile is undertaken. • Comparison with the previous study of transverse shower profile is necessary. LBNL 21-05-07

  16. Thanks to all STAR Collaborators • Thanks to Texas A&M nuclear physics group. • Thank you all

More Related