Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) - PowerPoint PPT Presentation

slide1 n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) PowerPoint Presentation
Download Presentation
Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

play fullscreen
1 / 61
Download Presentation
Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)
58 Views
Download Presentation

Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [PHY Layer Submission for 802.15.3c] Date Submitted: [7 May 2007] Source: [André Bourdoux, Stefaan Derore, Jimmy Nsenga, Wim Van Thillo - IMEC] Address [Kapeldreef 75, 3001 Leuven, Belgium] Voice:[+32-16-288215], FAX: [+32-16-281515], E-Mail:[bourdoux@imec.be] Re: [TG3c technical requirements] Abstract: [] Purpose: [Proposed PHY layer for IEEE802.15.3c 60 GHz WPANs] Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15. André Bourdoux, IMEC

  2. Introduction • Proposal for the PHY layer of IEEE802.15.3c in response to CFP 07/586r2. • Targets the high data rates Requirements of TG3c (15-05-0353-07) • Up to 3 Gbps including overheads • 3 channels channelization • Suitable for integration in full CMOS • Carefull analysis to reduce 60 GHz front-end impact André Bourdoux, IMEC

  3. Criteria for good Air Interface • Low cost • Low power consumption • Modest FE requirements • Low channel equalization complexity André Bourdoux, IMEC

  4. What is not in this presentation/proposal ? • MAC impact or modifications • Preamble/pilot design • Specific mapping and/or coding scheme (e.g. unequal error protection) for the support of video • We concentrate on the careful selection of the modulation/equalization scheme towards low cost, low power consumption and easy system-on-a-chip implementation André Bourdoux, IMEC

  5. PSK-based: CP-M-PSK CPM-based: CP-GMSK Air interface selection • Battery-powered terminal • Power amplifier and DAC/ADC are critical power consumer • LOS or NLOS, directional or omni-directional antennas • Low-to-high multipath propagation Optional CP forfrequency domain equalization (Quasi-)constant envelope modulations André Bourdoux, IMEC

  6. OFDM / SC-FDE / SC Transmitter Receiver OFDM IFFT CPI Channel CPR FFT FDE Demodulator NLOS CPI Channel CPR FFT FDE IFFT Demodulator LOS - option 1Receiver “decides” SC solution CPI Channel CPR Single-tap equalizer Demodulator LOS - option 2Transmitter “decides” Channel Single-tap equalizer Demodulator CPI: Cyclic Prefix Insertion CPR: Cyclic Prefix Removal SC: Single-carrier FDE: Frequency Domain Equalizer André Bourdoux, IMEC

  7. Cyclic prefix addition • Complexity is negligible • Requires buffering of small part of the payload data • CP length is programmable (0, 1/32, 1/16, 1/8 and 1/4) • Midamble for CP-GMSK ensures phase continuity For CP-M-PSK: Payloaddata N-1 CPN Payloaddata N CPN+1 Payloaddata N+1 For CP-GMSK: Payloaddata N-1 CPN Payloaddata N CPN+1 Payloaddata N+1 Midamble(4 bits) André Bourdoux, IMEC

  8. M-PSK and CP-M-PSK Transmitter Coding & Mapping 2 Pulse shaping filter DAC Add CP André Bourdoux, IMEC

  9. M-PSK and CP-M-PSK Receiver Single-tap time-domain equalizer Digital filter 2 Demapping & Decoding ADC Remove CP Freq-domain equalizer(FFT + equal. + IFFT) André Bourdoux, IMEC

  10. GMSK and CP-GMSK Transmitter Carrier frequency spacing: 2.3 GHz Phase Accum. Look-up table. Coding & Mapping 2 Freq. shaping filter DAC Add CP and midamble 2πh FM modulator Can be approximated with QPSK like modulator André Bourdoux, IMEC

  11. GMSK and CP-GMSK Receiver Matched filter(1st Laurent pulse) Detector Soft / Hard Channel Decoding ADC Remove CP FFT Equal. Filter1st Laurent Pulse IFFT Midamble deletion André Bourdoux, IMEC

  12. System parameters (1) • CP-M-PSK • Block length: 512 symbols • CP length: 0, 16, 32, 64, 128 symbols • Maximum symbol rate: 1.667 Gsymb/s • Block duration: 307.2 ns (data) + 76.8 ns (CP) • TX filter roll-off: 0.2  BW = 2 GHz • Carrier spacing: (1+0.15)BW = 2.3 GHz • Bit rate (CP=25%, CR=3/4): • BPSK: 1 Gbps • QPSK: 2 Gbps • 8-PSK: 3 Gbps André Bourdoux, IMEC

  13. System parameters (2) • CP-GMSK • Block length: 512 symbols • CP length: 0, 16, 32, 64, 128 symbols • Maximum symbol rate: 1.667 Gsymb/s • Block duration: 307.2 ns (data) + 76.8 ns (CP) • CPM pulse shape: Gaussian, length 3 • Carrier spacing: (1+0.15)BW = 2.3 GHz • Bit rate (CP=25%, CR=3/4): 1 Gbps André Bourdoux, IMEC

  14. System parameters (3) Coded bit rate @ highest sample rate (3.333 Gsamples/s) André Bourdoux, IMEC

  15. System parameters (4) - Scalability x 1/4 x 1/4 x 1/4 André Bourdoux, IMEC

  16. System parameters (5) – Frequency plan 2.3 GHz FS-A 575 MHz FS-BFS-CFS-D FS-B, FS-C and FS-D use same center frequencies FS-B, FS-C and FS-D can exploit flat portion of spectrum  diversity gain Simple synthesizer design André Bourdoux, IMEC

  17. PSDs André Bourdoux, IMEC

  18. PSD of M-PSK before PA Carrier frequency spacing: 2.3 GHz André Bourdoux, IMEC

  19. PSD of M-PSK after PA Carrier frequency spacing: 2.3 GHz André Bourdoux, IMEC

  20. PSD of GMSK (before/after PA) Carrier frequency spacing: 2.3 GHz André Bourdoux, IMEC

  21. BER and PER performances André Bourdoux, IMEC

  22. PSD(dBc/Hz) -87 dBc/Hz -20 dB/decade -140 dBc/Hz 1 MHz Modeled non-idealities (combined) • PA: modified Rapp model • AM-AM: p = 1.1, G = 16 (12 dB) • AM-PM: q = 4.5, A = -885, B = 0.1665 • ADC: • Resolution: • 5 bits ENOB for M-PSK • 4 bits ENOB for GMSK • Clipping level: 2xVrms • Phase noise: • -87 dBc/Hz • - 20 dB/dec from 1 MHz • -140 dBc/Hz floor Δf (Hz) André Bourdoux, IMEC

  23. Uncoded BER Performances • Ideal case • CM13 – Single-tap time-domain equalizer (quasi LOS) • CM13 – Frequency-domain equalizer • CM23 – Frequency-domain equalizer • CM31 – Frequency-domain equalizer • Combined non-idealities (PA + ADC + Phase noise (with tracking)) • CM13 – Single-tap time-domain equalizer (quasi LOS) • CM13 – Frequency-domain equalizer • CM23 – Frequency-domain equalizer • CM31 – Frequency-domain equalizer André Bourdoux, IMEC

  24. Uncoded BER, ideal front-end André Bourdoux, IMEC

  25. Uncoded BER, non-ideal front-end (PA, ADC and PN) André Bourdoux, IMEC

  26. GMSK and CP-GMSKSensitivity to non-idealities André Bourdoux, IMEC

  27. BPSK and CP-BPSKSensitivity to non-idealities André Bourdoux, IMEC

  28. QPSK and CP-QPSKSensitivity to non-idealities André Bourdoux, IMEC

  29. 8-PSK and CP-8-PSKSensitivity to non-idealities André Bourdoux, IMEC

  30. Coded BER/PER Performances • Ideal case • CM13 – Single-tap time-domain equalizer (quasi LOS) • CM13 – Frequency-domain equalizer • CM23 – Frequency-domain equalizer • CM31 – Frequency-domain equalizer • Combined non-idealities (PA + ADC + Phase noise (with tracking)) • CM13 – Single-tap time-domain equalizer (quasi LOS) • CM13 – Frequency-domain equalizer • CM23 – Frequency-domain equalizer • CM31 – Frequency-domain equalizer André Bourdoux, IMEC

  31. Coded BER, ideal front-end André Bourdoux, IMEC

  32. Coded BER, non-ideal front-end(PA, ADC and PN) André Bourdoux, IMEC

  33. PER = 0.08 PER = 0.08 PER = 0.08 PER = 0.08 Coded PER, ideal front-end André Bourdoux, IMEC

  34. PER = 0.08 PER = 0.08 PER = 0.08 PER = 0.08 Coded PER, non-ideal front-end(PA, ADC and PN) André Bourdoux, IMEC

  35. Link budget, Sensitivity André Bourdoux, IMEC

  36. Example link budget - BPSK André Bourdoux, IMEC

  37. Example link budget - QPSK André Bourdoux, IMEC

  38. Example link budget – 8-PSK André Bourdoux, IMEC

  39. Range for different modes / antenna gains André Bourdoux, IMEC

  40. Sensitivity for all modes, all channels André Bourdoux, IMEC

  41. Individual non-idealities • Modeled for CM13-LOS and CM23 • Non-idealities: • PA • ADC • Phase noise compensated • “similar signal” in adjacent bands André Bourdoux, IMEC

  42. CM23 CM23 CM23 LOS LOS LOS PA effect 5 dB back-off is enough 3 dB back-off is acceptable CPM is unaffected André Bourdoux, IMEC

  43. CM23 CM23 CM23 CM23 LOS LOS LOS LOS Effect of Phase noise -85 dBc/Hz is enough -87 dBc/Hz preferred for 8-PSK André Bourdoux, IMEC

  44. CM23 CM23 CM23 CM23 LOS LOS LOS LOS Effect of Adjacent channel interference +35 dB ACI is ok for most cases +30 dB for 8-PSK André Bourdoux, IMEC

  45. CM23 CM23 CM23 CM23 LOS LOS LOS LOS Effect of ADC (4 bits) André Bourdoux, IMEC

  46. CM23 CM23 CM23 CM23 LOS LOS LOS LOS Effect of ADC (5 bits) André Bourdoux, IMEC

  47. CM23 CM23 LOS LOS Effect of ADC (3 bits) For CPM and BPSK, 3 bits is ok For QPSK 4 bits is ok For 8-PSK, 5 bits is needed in multipath André Bourdoux, IMEC

  48. Impact of ADC on SC and OFDM • Baseband sample rate = 3.333 Gsps for the 3 modes • SC-8PSK: 3 Gbits/s • OFDM-8PSK: 2.4 Gbits/s • OFDM-16QAM: 3.2 Gbits/s André Bourdoux, IMEC

  49. Impact of PA on SC and OFDM • Baseband sample rate = 3.333 Gsps for the 3 modes • SC-8PSK: 3 Gbits/s • OFDM-8PSK: 2.4 Gbits/s • OFDM-16QAM: 3.2 Gbits/s André Bourdoux, IMEC

  50. Manufacturability André Bourdoux, IMEC