variation of fundamental constants from big bang to atomic clocks n.
Skip this Video
Loading SlideShow in 5 Seconds..
Variation of Fundamental Constants from Big Bang to Atomic Clocks PowerPoint Presentation
Download Presentation
Variation of Fundamental Constants from Big Bang to Atomic Clocks

Variation of Fundamental Constants from Big Bang to Atomic Clocks

139 Views Download Presentation
Download Presentation

Variation of Fundamental Constants from Big Bang to Atomic Clocks

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Variation ofFundamental Constants from Big Bang to Atomic Clocks V.V. Flambaum School of Physics, UNSW, Sydney, Australia Co-authors: Atomic calculations V.Dzuba,M.Kozlov,E.Angstmann,J.Berengut,M.Marchenko,Cheng Chin,S.Karshenboim,A.Nevsky Nuclear and QCD calculations E.Shuryak,V.Dmitriev,D.Leinweber,A.Thomas,R.Young,A.Hoell, P.Jaikumar,C.Roberts,S.Wright,A.Tedesco,W.Wiringa Cosmology J.Barrow Quasar data analysis J.Webb,M.Murphy,M.Drinkwater,W.Walsh,P.Tsanavaris,S.Curran Quasar observations C.Churchill,J.Prochazka,A.Wolfe, thanks to W.Sargent,R.Simcoe

  2. Motivation • Extra space dimensions (Kaluza-Klein, Superstring and M-theories). Extra space dimensions is a common feature of theories unifying gravity with other interactions. Any change in size of these dimensions would manifest itself in the 3D world as variation of fundamental constants. • Scalar fields . Fundamental constants depend on scalar fields which vary in space and time (variable vacuum dielectric constant e0 ). May be related to “dark energy” and accelerated expansion of the Universe.. • “ Fine tuning” of fundamental constants is needed for humans to exist. Example: low-energy resonance in production of carbon from helium in stars (He+He+He=C). Slightly different coupling constants — no resonance –- no life. Variation of coupling constants in space provide natural explanation of the “fine tuning”: we appeared in area of the Universe where values of fundamental constants are suitable for our existence.

  3. Search for variation of fundamental constants • Big Bang Nucleosynthesis • Quasar Absorption Spectra 1 • Oklo natural nuclear reactor • Atomic clocks 1 |Dc|>0? |Dc|>0? |Dc|>0? 1 Based on analysis of atomic spectra

  4. Which Constants? Since variation ofdimensionalconstants cannot be distinguished from variation of units, it only makes sense to consider variation of dimensionless constants. • Fine structure constanta=e2/hc=1/137.036 • Electron or quark mass/QCD strong interaction scale, me,q/LQCD astrong (r)=const/ln(r LQCD /ch)

  5. Variation of fine structureconstanta

  6. Quasar absorption spectra Gas cloud Quasar Earth Light a

  7. Quasar absorption spectra Gas cloud Quasar Earth Light One needs to know E(a2) for each line to do the fitting a

  8. Use atomic calculations to find w(a). For aclose toa0w = w0 + q(a2/a02-1) qis found by varying a in computer codes: q = dw/dx = [w(0.1)-w(-0.1)]/0.2, x=a2/a02-1 a =e2/hc=0corresponds to non-relativistic limit (infinite c).

  9. Methods of Atomic Calculations These methods cover all periodic system of elements • They were used for many important problems: • Test of Standard Model using Parity Violation in Cs, Tl… • Predicting spectrum of Fr (accuracy 0.1%), etc.

  10. Fine structure anomalies and level crossing Energies of “normal” fine structure triplets as functions ofa2 DE=A(Za)2 0 (a/a0)2 1

  11. Problem: level pseudo crossing Values ofq=dE/da2are sensitive to the position of level crossing Energy levels of Ni II as functions ofa2 Solution:matching experimental g-factors 0 (a/a0)2 1

  12. Results of calculations (in cm-1) Negative shifters Anchor lines Positive shifters Also, many transitions inMn II, Ti II, Si IV, C II, C IV, N V, O I, Ca I, Ca II, Ge II, O II, Pb II Different signs and magnitudes of q provides opportunity to study systematic errors!

  13. ω = + (α2/α02 – 1) ω0 q Laboratory Measurements (London, NIST, Lund, etc.) w0 Analysis (J.Webb, M.Murphy, et al.) Atomic Calculations (V.A. Dzuba, V.V. Flambaum, et al.) Quasar Observations (Keck, VLT) w q Da

  14. Results of the analysis • Murphy et al, 2003: Kecktelescope,143 systems, 23 lines, 0.2<z<4.2 Da/a=-0.543(116) x 10-5 • Quast et al, 2004: VLT telescope, 1 system, Fe II, 6 lines, 5 positive q-s, one negative q, z=1.15 Da/a=-0.4(1.9)(2.7) x 10-6 • Srianand et al, 2004: VLT telescope, 23 systems, 12 lines, Fe II, Mg I, Si II, Al II, 0.4<z<2.3 Da/a=-0.06(0.06) x 10-5 Systematic effect or spatial variation?

  15. Spatial variation (C.L.Steinhardt) No explanation by systematic effects have been found sofar 10 5 Da/a Murphy et al • North hemisphere -0.66(12) • South (close to North) -0.36(19) Strianand et al (South) -0.06(06)

  16. Variation of strong interaction Grand unification models (Marciano; Calmet, Fritzch;Langecker,Segre Strasser;Dent) D(m/LQCD)/(m/LQCD)=35Da/a • Proton mass Mp=3LQCD , measure me/Mp • Nuclear magnetic moments m=g eh/4Mpc g=g(mq/ LQCD) 3. Nuclear energy levels

  17. Dependence on quark mass • Dimensionless parameter is mq/LQCD . It is convenient to assume LQCD =const, i.e. measure mq in units of LQCD • mp is proportional to (mqLQCD)1/2 Dmp/mp=0.5Dmq/mq • Other meson and nucleon masses remains finite for mq=0. Dm/m=K Dmq/mq Coefficients K are calculated for p,n,r,w,s.

  18. Nuclear magnetic moments depends on p-meson mass mp Nucleonmagnetic moment p n p p Spin-spininteraction between valence and core nucleons p n

  19. Nucleon magnetic moment Nucleon and meson masses QCD calculations: lattice, chiral perturbation theory,cloudy bag model, Shwinger-Dyson equation, semiempirical. Nuclear calculations: meson exchange theory of strong interaction.

  20. Measurements me / Mp or me / LQCD • Tsanavaris,Webb,Murphy,Flambaum, Curran PRL 2005 Hyperfine H/optical , 8 quasar absorption systems with Mg,Ca,Mn,C,Si,Zn,Cr,Fe,Ni Measured X=a2 gpme / Mp DX/X=1.17(1.01)10-5 No variation • Reinhold,Bunnin,Hollenstein,Ivanchik, Petitjean PRL 2006 , H2 molecule, 2 systems D(me / Mp )/ (me / Mp)=-2.4(0.6)10-5 Variation 4 s ! Systematics or space-time variation?

  21. Oklo natural nuclear reactor n+Sm capture cross section is dominated by Er =0.1 eV resonance Shlyakhter;Damour,Dyson;Fujii et al Limits on variation of alpha Flambaum, Shuryak PRD 2003 DEr = 170 MeV DX/X + 1 MeV Da/a X=ms/ LQCD , enhancement 170 MeV/0.1 eV=1.7x109 Lamoreax,Torgerson PRD(2004) DEr =-0.58(5) eV DX/X=-0.34(3) 10-9 two billion years ago

  22. Atomic clocks Cesium primary frequency standard: F=4 F=3 HFS of 6s: n = 9 192 631 770 Hz Also: Rb, Cd+, Ba+, Yb+, Hg+, etc. E.g. n(Hg+) = 40 507 347 996.841 59(14)(41) Hz (D. J. Berkeland et al, 1998).

  23. Optical frequency standards: Also: H, Al+, Sr, Ba+, Yb, Hg, Hg+, Tl+, Ra+,etc. Accuracy about 10-15 can be further improved to 10-18!

  24. Atomic clocks: Comparing rates of different clocks over long period of time can be used to study time variation of fundamental constants! Optical transitions:a Microwave transitions: a, (me, mq )/LQCD

  25. Advantages: • Very narrow lines, high accuracy of measurements. • Flexibility to choose lines with larger sensitivity to variation of fundamental constants. • Simple interpretation (local time variation).

  26. Calculationsto link change of frequency to change of fundamental constants: Optical transitions: atomic calculations (as for quasar absorption spectra) for many narrow lines in Al II, Ca I, Sr I, Sr II, In II, Ba II, Dy I, Yb I, Yb II, Yb III, Hg I, Hg II, Tl II, Ra II . w = w0 + q(a2/a02-1) Microwave transitions: hyperfine frequency is sensitive to nuclear magnetic moments (suggested by Karshenboim) We performed atomic, nuclear and QCD calculations of powers k ,b for H,D,Rb,Cd+,Cs,Yb+,Hg+ V=C(Ry)(me/Mp)a2+k(mq/LQCD)b , Dw/w=DV/V

  27. Results for variation of fundamental constants aassuming mq/LQCD = Const Combined results: d/dt lna= -0.9(2.9) x 10-15 yr-1 d/dt ln(mq/LQCD) = ...10-15 yr-1 me /Mp or me/LQCD …10-15yr -1

  28. Dysprosium miracle Dy: 4f105d6s E=19797.96… cm-1 , q= 6000 cm-1 4f95d26s E=19797.96… cm-1 , q= -23000 cm-1 Interval Dw = 10-4 cm-1 Enhancement factorK = 108(!), i.e.Dw/w0 =108 Da/a Preliminary result (Budker et al, Berkeley) |dlna/dt| < 4.3 x 10-15 yr-1 Problem: states are not narrow!

  29. Molecular clocks Cancellations between rotational and hyperfine intervals in very narrow microwave transitions in LaS, LaO, LuS,LuO, etc. w0 =Erotational -E hyperfine= E hyperfine /100-1000 Enhancement factorK = 102 -103, Dw/w0 =KDa/a

  30. Nuclear clocks(suggested by Peik,Tamm 2003) Very narrow UV transition between first excited and ground state in 229 Th nucleus Energy 3-5 eV, width 10-4 Hz Nuclear/QCD calculation: Enhancement 105 -106, Dw/w0 =105 (4 Da/a + DXq/Xq-10DXs/Xs ) Xq=mq/ LQCD , Xs=ms/ LQCD 235 U energy 76 eV, width 6 10-4 Hz

  31. Ultracold atomic and molecular collisions (in Bose condensate). Cheng Chin, Flambaum PRL 2006 Enhancement near Feshbach resonance. Variation of scattering length • a/a=K D X/X , K=102 – 1012 X=me/Mp

  32. Conclusions • Quasar data: MM method provided sensitivity increase 100 times. Anchors, positive and negative shifters-control of systematics. Keck- variation of a, VLT-no variation. Undiscovered systematics or spatial variation. • me /Mp : hyperfine H/optical – no variation, H2 - variation 4 s . Undiscovered systematics or space-time variation. • Big Bang Nucleosynthesis: may be interpreted as variation of ms/ LQCD ? • Oklo: variation of ms/ LQCD ? • Atomic clocks: present time variation of a , ms/ LQCD • Transitions between narrow close levels in atoms, molecules and nuclei – huge enhancement!

  33. Publications: • V. A. Dzuba, V. V. Flambaum, J, K. Webb, PRL 82, 888 (1999). • V. A. Dzuba, V. V. Flambaum, J, K. Webb, PRA 59, 230 (1999). • V. A. Dzuba, V. V. Flambaum, PRA 61, 034502 (2000). • V. A. Dzuba, V. V. Flambaum, M. T. Murphy, J, K. Webb, LNP 570, 564 (2001). • J. K. Webb et al , PRL 87, 091301 (2001). • V. A. Dzuba, V. V. Flambaum, M. T. Murphy, J, K. Webb, PRA 63, 042509 (2001). • M. M. Murphy et al, MNRAS, 327, 1208 (2001). • V. A. Dzuba et al, PRA, 66, 022501 (2002). • V. A. Dzuba, V. V. Flambaum, M. V. Marchenko, PRA 68, 022506 (2003). • E. J. Angstmann, V. A. Dzuba, V. V. Flambaum, PRA 70, 014102 (2004). • J. C. Berengat et al, PRA 70, 064101 (2004). • M. M. Murphy et al, LNP, 648, 131 (2004). • V. A. Dzuba, PRA, 71, 032512 (2005). • V. A. Dzuba, V. V. Flambaum, PRA, 71, 052509 (2005). • V. A. Dzuba, V. V. Flambaum, PRA, 72, 052514 (2005). • V. A. Dzuba, PRA, 71, 062501 (2005). • S. G. Karshenboim et al, physics/0511180.