290 likes | 395 Vues
Learn about Container Classes, Storage Class, Iterator Classes, Algorithm Classes, and operation details of STL classes like vector, list, set, multiset, stack, queue, priority queue, map, and deque in C++ Standard Template Library (STL).
E N D
STL Classes • Container Classes • Storage Class • stack, queue, vector, map ... • Iterator Classes • Algorithm Classes • frequently used algorithms • sort, find, binary search, next_permutation ...
Vector • random access ([] operator) like an array • add / remove an element in constant time at the last of vector • add / remove an element in linear time in the middle of vector • automatic memory management • needn’t specify quantity of elements
Vector Operations #include <vector> int main() { vector<int> v; v.push_back(10); cout<<v[0]<<endl; v.push_back(20); cout<<v[0]<<” “<<v[1]<<endl; cout << v.size() << “ “ << v.capacity() << endl; v.pop_back(); print(v); cout << v.size() << “ “ << v.capacity() << endl; } /* Output: 10 10 20 2 2 10 1 2 */
String Class Operations • string s = "hello"; • string s1 = s.substr(0, 3), // "hel" • s+=“ Ayan” • s2 = s.substr(1, 6), // "ello A“ • s4 = s.substr(1); // "ello Ayan"
List • Sequence • Elements in sequence containers are ordered in a strict linear sequence. • Individual elements are accessed by their position in this sequence. • Doubly-linked list
List Operations #include <list> int main() { list <int> la, lb; la.push_back(0), la.push_back(1), la.push_back(3); lb.push_back(4), lb.push_front(2); la.sort(); lb.sort(); la.merge(lb); /*merge function merges 2 sorted lists*/ print(la); } /* Output: 0 1 2 3 4 */
Set • Associative • Elements in associative containers are referenced by their key and not by their absolute position in the container. • Ordered • The elements in the container follow a strict order at all times. All inserted elements are given a position in this order. • Unique keys • No two elements in the container can have equivalent keys. • Implemented as balanced binary search trees. • Insertion Searching complexity O(logn)
Set Operations #include <set> struct ltstr { bool operator() (const char* s1, const char* s2) const { return (strcmp(s1, s2) < 0); } } int main() { const char* str[6] = {“Ayan”, “Sagar”, “Nitin” ,“Sasy”, “Sadhu”}; set<const char*, ltstr> s(str, str + 6); print(s); } /* Output: AyanNitin Sadhu Sagar Sasy */
MultiSet • Same as set • But elements need not be unique.
Stack Operations #include <stack> int main() { stack<int> s; s.push(8); s.push(5); s.push(6); cout << s.top() << endl; s.pop(); cout << s.top() << endl; } /* Output: 6 5 */
Queue Operations #include <queue> int main() { queue<int> q; q.push(8); q.push(5); q.push(6); cout << q.top() << endl; q.pop(); cout << q.top() << endl; } /* Output: 8 5 */
priority queue • Max Heap • Maximum Element at top of queue
Priority_Queue Operations #include <queue> int main() { priority_queue< int > pq; int ary[6] = {1, 4, 2, 8, 5, 7}; for (int i = 0; i < 6; pq.push(ary[i++])); while (!pq.empty()) { cout << pq.top() << “ “; pq.pop(); } } /* Output: 8 7 5 4 2 1 */
Map • Associative • Elements in associative containers are referenced by their key and not by their absolute position in the container. • Ordered • The elements in the container follow a strict order at all times. All inserted elements are given a position in this order. • Map • Each element associates a key to a mapped value: Keys are meant to identify the elements whose main content is the mapped value. • Unique keys • No two elements in the container can have equivalent keys. • Implemented as balanced binary search trees. • Insertion Searching complexity O(logn)
Map Operations #include <map> int main() { map<string, int> grade; grade[“Mark”] = 95; grade[“Edward”] = 87; grade[“Louise”] = 66; grade[“Allen”] = 76; for(map<string,int> iterator it=grade.begin();it!=grade.end();it++) cout<<*it.first<<“ “<<*it.second<<endl; cout << grade[“Allen”] << endl; } /* Output: Allen, 76 Edward, 87 Louise, 66 Mark, 95 76 */
Deque • Double Ended Queue • Functionality similar to vectors, • but with efficient insertion and deletion of elements also at the beginning of the sequence, and not only at its end • Sequence • Elements in sequence containers are ordered in a strict linear sequence. Individual elements are accessed by their position in this sequence.
Deque Operations #include <deque> int main() { deque<int> dq; dq.push_back(3); dq.push_front(1); dq.insert(de.begin() + 1, 2); dq[2] = 0; } /* Output: 1 2 0 *
STL Iterators • Every STL container holds a nested iterator class
Iterator Operations #include <vector> #include <iterator> #include <algorithm> int main() { vector<int> v; int ary[6] = {1, 4, 2, 8, 5, 7}; for (int i = 0; i < 6; v.push_back(ary[i++])); for (vector<int>::iterator it = v.begin(); it != v.end(); it++) cout << (*it) << “ “; cout << endl; } /* Output: 1 4 2 8 5 7 */
find • int main () • { • int myints[] = { 10, 20, 30 ,40 }; • int * p; // pointer to array element: • p = find (myints,myints+4,30); • ++p; • cout << "The element following 30 is " << *p << '\n'; • vector<int> myvector (myints,myints+4); • vector<int>::iterator it; // iterator to vector element • it = find (myvector.begin(), myvector.end(), 30); • ++it; • cout << "The element following 30 is " << *it << '\n'; • return 0; • } The element following 30 is 40 The element following 30 is 40
Next_permutation • // next_permutation example • #include <algorithm> // std::next_permutation, std::sort • int main () • { • int myints[] = {1,2,3}; • sort(myints,myints+3); • cout<<"The 3! possible permutations with 3 elements:\n"; • do { • print(myints); • } while(next_permutation(myints,myints+3)); • return 0; • } The 3! possible permutations with 3 elements: 1 2 3 1 3 2 2 1 3 2 3 1 3 1 2 3 2 1
sort() #include<algorithm>int main() { int ar[5]={3,2,4,1,5}; vector<int> v; for(int i=0;i<5;i++) v.push_back(ar[i]); sort(ar,ar+5); sort(v.begin(),v.end(),greater<int>); print(ar); print(v); } /* Output 1 2 3 4 5 5 4 3 2 1 */
Binary Search // lower_bound/upper_bound example #include <iostream> // std::cout #include <algorithm> // std::lower_bound, std::upper_bound, std::sort #include <vector> // std::vector int main () { intmyints[] = {10,20,30,30,20,10,10,20}; std::vector<int> v(myints,myints+8); // 10 20 30 30 20 10 10 20 std::sort (v.begin(), v.end()); // 10 10 10 20 20 20 30 30 std::vector<int>::iterator low,up; low=std::lower_bound (v.begin(), v.end(), 20); up= std::upper_bound (v.begin(), v.end(), 20); std::cout << "lower_bound at position " << (low- v.begin()) << '\n'; std::cout << "upper_bound at position " << (up - v.begin()) << '\n'; return 0; } /*Output lower_bound at position 3 upper_bound at position 6 */
A Small Example • vector<pair<int,int> > v(5); • for(int i=0;i<5;i++) v[i]=make_pair(5-i,i); • sort(v.begin(),v.end()); • for(vector<pair<int,int> >::iterator it=v.begin();it!=v.end();it++) • cout<<*it.first<<“ “<<*it.second<<endl; • for(int i=0;i<5;i++) • cout<<v[i].first<<“ “v[i].second<<endl; Output 1 4 2 3 3 2 4 1 5 0
Longest Increasing Subsequence set<int> st; set<int>::iterator it; st.clear(); for(int i=0; i<n; i++) { it=st.find(array[i]); if(*it==array[i]); else { st.insert(array[i]); it=st.find(array[i]); it++; if(it!=st.end()) st.erase(it); } for(set<int>::iterator it2=st.begin();it2!=st.end();it2++) printf("%d ",*it2); printf("\n"); } cout<<st.size()<<endl;
Longest Increasing Subsequence Operations /*Input 5 1 2 1 */ /*Output 1 1 2 1 2 2 */ /*Input 5 1 4 2 4 3 */ /*Output 1 1 4 1 2 1 2 4 1 2 3 3 */