160 likes | 278 Vues
This lesson delves into the process of standardizing a normal distribution using the formula Z = (X - μ) / σ. It covers key concepts such as calculating probabilities and interpreting Z-scores. Through examples involving diastolic blood pressure and distinct groups (with and without coronary heart disease), students will learn to compute probabilities related to specific values. The lesson emphasizes the application of standard normal distribution and provides insights into sensitivity and specificity in diagnostic tests.
E N D
Lesson #16 Standardizing a Normal Distribution
m - s m m + s 0 -1 1 X ~ N(m , s2) X - m Z = ~ N(0 , 1) s
= c P(X < c) P(X < c) =
60 X = diastolic blood pressure, X ~ N(77 , 11.62) P(X < 60) = P(Z < -1.47) = .0708 65.4 77 88.6
65.4 77 88.6 90 P(X > 90) = 1 - P(X < 90) = 1 - P(Z < 1.12) = 1 - .8686 = .1314
P(60 < X < 90) = P(X < 90) - P(X < 60) = P(Z < 1.12) - P(Z < -1.47) = .8686 - .0708 = .7978
.1314 .0708 60 90 = 1 – [ P(X < 60) + P(X > 90) ] P(60 < X < 90) = 1 – [ .0708 + .1314 ] = .7978 65.4 77 88.6
CHD (D): X ~ N(244 , 512) No CHD (D’): X ~ N(219 , 412) D’ D 219 244
D’ D 219 244 P(X > 260 | CHD) = 1 - P(X < 260 | CHD) = 1 - P(Z < 0.31) = 1 - .6217 = .3783 260
D’ D 260 - + 219 244 P(X > 260 | CHD) = P( + | D) = Se
D’ D 219 244 P(X > 260 | no CHD) = 1 - P(X < 260 | no CHD) = 1 - P(Z < 1.00) = 1 - .8413 = .1587 260
D’ D - + 219 244 P(X > 260 | no CHD) = P( + | D’) Sp = .8413 = 1 - P( - | D’) = 1 - Sp 260
P(X < 260 | CHD) = P( - | D) = 1 - P( + | D) = 1 - .3783 = .6217 = 1 - Se
Sp Se D’ D - + 219 244 260
.95 = Sp = P( - | D’) = P( X < c | no CHD) .95 P( Z < 1.65)
.95 = Sp = P( - | D’) = P( X < c | no CHD) .95 P( Z < 1.65) c 286.65 287