90 likes | 208 Vues
This document provides a detailed demonstration of the Ford-Fulkerson algorithm, showcasing the computation of maximum flow in a flow network. Throughout the process, various capacities and flow values are illustrated using the network G, indicating the evolution of flow and residual capacities at each step. The focus is on the calculated flow values, which culminate in understanding how the algorithm derives the maximum flow through iterative updates. The analytical process highlights the practical application of the Ford-Fulkerson method in network flow problems.
E N D
Ford-Fulkerson Algorithm 0 flow 2 4 4 capacity G: 0 0 0 6 0 8 10 10 2 0 0 0 0 10 s 3 5 t 10 9 Flow value = 0
8 X 8 X 8 X Ford-Fulkerson Algorithm 0 flow 2 4 4 capacity G: 0 0 0 6 0 8 10 10 2 0 0 0 0 10 s 3 5 t 10 9 Flow value = 0 2 4 4 residual capacity Gf: 6 8 10 10 2 10 s 3 5 t 10 9
10 X X 2 10 X 2 X Ford-Fulkerson Algorithm 0 2 4 4 G: 0 8 8 6 0 8 10 10 2 0 0 8 0 10 s 3 5 t 10 9 Flow value = 8 2 4 4 Gf: 8 6 8 10 2 2 10 s 3 5 t 2 9 8
6 X X 6 6 X 8 X Ford-Fulkerson Algorithm 0 2 4 4 G: 0 10 8 6 0 8 10 10 2 2 0 10 2 10 s 3 5 t 10 9 Flow value = 10 2 4 4 Gf: 6 8 10 10 2 10 s 3 5 t 10 7 2
2 X 8 X X 0 8 X Ford-Fulkerson Algorithm 0 2 4 4 G: 6 10 8 6 6 8 10 10 2 2 6 10 8 10 s 3 5 t 10 9 Flow value = 16 2 4 4 Gf: 6 6 8 4 10 2 4 s 3 5 t 10 1 6 8
3 X 9 X 7 X 9 X 9 X Ford-Fulkerson Algorithm 2 2 4 4 G: 8 10 8 6 6 8 10 10 2 0 8 10 8 10 s 3 5 t 10 9 Flow value = 18 2 2 4 2 Gf: 8 6 8 2 10 2 2 s 3 5 t 10 1 8 8
Ford-Fulkerson Algorithm 3 2 4 4 G: 9 10 7 6 6 8 10 10 2 0 9 10 9 10 s 3 5 t 10 9 Flow value = 19 3 2 4 1 Gf: 9 1 6 7 1 10 2 1 s 3 5 t 10 9 9
Ford-Fulkerson Algorithm 3 2 4 4 G: 9 10 7 6 6 8 10 10 2 0 9 10 9 10 s 3 5 t 10 9 Cut capacity = 19 Flow value = 19 3 2 4 1 Gf: 9 1 6 7 1 10 2 1 s 3 5 t 10 9 9