330 likes | 390 Vues
Mathematics for Computing. Lecture 2: Computer Logic and Truth Tables Dr Andrew Purkiss-Trew Cancer Research UK a.purkiss@mail.cryst.bbk.ac.uk. Logic. Propositions Connective Symbols / Logic gates Truth Tables Logic Laws. Propositions.
E N D
Mathematics for Computing Lecture 2: Computer Logic and Truth Tables Dr Andrew Purkiss-Trew Cancer Research UK a.purkiss@mail.cryst.bbk.ac.uk
Logic • Propositions • Connective Symbols / Logic gates • Truth Tables • Logic Laws
Propositions • Definition: A proposition is a statement that is either true or false. Which ever of these (true or false) is the case is called the truth value of the proposition.
Connectives • Compound propositione.g. ‘If Brian and Angela are not both happy, then either Brian is not happy or Angela is not happy’ • Atomic proposition:‘Brian is happy’ ‘Angela is happy’ • Connectives:and, or, not, if-then
Conjugation • Logical ‘and’ • Symbol ٨ • Written p٨q • Alternative forms p & q, p . q, pq • Logic gate version p pq q
Disjunction • Logical ‘or’ • Symbol ٧ • Written p ٧ q • Alternative form p + q • Logic gate version p p + q q
Negation • Logical ‘not’ • Symbol ~ • Written ~p • Alternative forms ¬p, p’, p • Logic gate version p ~p
Compound Propositions ~(p ٨ ~q)
Tautologies • Always true
Contradictions • Always false
Website for Lecture Notes • http://www.cryst.bbk.ac.uk/~bpurk01/MfC/index2007.html
End of First Logic 1? • Place marker
Mathematics for Computing Lecture 3: Computer Logic and Truth Tables 2 Dr Andrew Purkiss-Trew Cancer Research UK a.purkiss@mail.cryst.bbk.ac.uk
Logical Equivalence • Logical ‘equals’ • Symbol ≡ • Written p≡p
Conditional • Logical ‘if-then’ • Symbol → • Written p → q
Biconditional • Logical ‘if and only if’ • Symbol ↔ • Written p ↔ q
converse and contrapositive • The converse of p → q is q → p • The contrapositive of p → q is ~q → ~p
Laws of Logic • Laws of logic allow use to combine connectives and simplify propositions.
Double Negative Law • ~ ~ p ≡p
Implication Law • p → q ≡ ~p ٧ q
Equivalence Law • p ↔ q ≡ (p → q) ٨ (q → p)
Idempotent Laws • p ٨ p ≡p • p ٧ p ≡p
Commutative Laws • p ٨ q ≡q ٨ p • p ٧ q ≡q ٧ p
Associative Laws • p ٨ (q ٨ r) ≡ (p ٨ q) ٨ r • p ٧ (q ٧ r) ≡ (p ٧ q) ٧ r
Distributive Laws • p ٨ (q ٧ r) ≡ (p ٨ q) ٧ (p ٨ r) • p ٧ (q ٨ r) ≡ (p ٧ q) ٨ (p ٧ r)
Identity Laws • p ٨ T ≡p • p ٧ F ≡p
Annihilation Laws • p ٨ F ≡F • p ٧ T ≡T
Inverse Laws • p ٨ ~p ≡F • p ٧ ~p ≡T
Absorption Laws • p ٨ (p ٧ q) ≡p • p ٧ (p ٨ q) ≡p
de Morgan’s Laws • ~(p ٨ q) ≡~p ٧ ~q • ~(p ٧ q) ≡~p ٨ ~q