1 / 29

天の川銀河の分子ガスの密度 頻度

天の川銀河研究会 2012/9/6 @ 鹿児島大学. 天の川銀河の分子ガスの密度 頻度. 半田利弘 ( 鹿児島大学 ). 星間 ガスと物質循環. 星間物質 星間ガス 電離ガス、中性原子ガス、分子ガス 星間塵 星形成の母胎 宇宙での物質循環 「希薄な星間ガス」から「星」へ 天の川銀河内での様子を調べる 分布 物理的性質(温度、密度). Gas density: 2 concepts. ISM has a fine structure. sub-cloud scale structure

yuri
Télécharger la présentation

天の川銀河の分子ガスの密度 頻度

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 天の川銀河研究会 2012/9/6@鹿児島大学 天の川銀河の分子ガスの密度頻度 半田利弘(鹿児島大学)

  2. 星間ガスと物質循環 • 星間物質 • 星間ガス • 電離ガス、中性原子ガス、分子ガス • 星間塵 • 星形成の母胎 • 宇宙での物質循環 • 「希薄な星間ガス」から「星」へ • 天の川銀河内での様子を調べる • 分布 • 物理的性質(温度、密度)

  3. Gas density: 2 concepts • ISM has a fine structure. • sub-cloud scale structure • “gas density” with a limited resolution • thermo-dynamical density n→ excitation • averaged gas density <r> → mass in a volume

  4. Gas density structure • Geometrical approach • High resolution mapping • Statistical approach • Gas density histogram • “Probability Density Function” • steady state • uniform condition

  5. Previous works • Column density • star forming regions • a whole galaxy: LMC in HI • Volume density • HI & HII in MWG Wada et al. 2000 Berkhuijsen & Fletcher 2008

  6. AMANOGAWA-2SB survey • 12CO (2-1) & 13CO (2-1) survey • with AMANOGAWA telescope • Dish: 60 cm, Beamsize: 9 arcmin • RX: 2SB = waveguide sideband-separating SIS • simultaneous observations in both lines • Tsys=120 K @ zenith • Spectrometer: AOS Nakajima et al. (2007)

  7. Survey specifications • The Galactic plane • Grid spacing: 7.5’ • Velocity resolution: 1.3 km s-1 • Noise level: ~0.05 K • grid and velocity resolution = Colombia survey Dame et al. 2001

  8. Integrated intensity maps • Distribution on the sky 12CO(2-1) 180 150 120 90 60 30 13CO(2-1)

  9. l-v diagrams • Longitude-velocity diagrams 12CO(2-1) +100km/s +100km/s 13CO(2-1) 180 150 120 90 60 30 Galactic Longitude [deg] 180 150 120 90 60 30 Galactic Longitude [deg]

  10. samples • In this talk, data for 5o<l<90o, |b|<5o • to reduce bias by the local clouds 12CO(2-1) 180 150 120 90 60 30 Galactic Longitude [deg]

  11. CO intensity correlations • 12CO(2-1) vs12CO(1-0) • Ratio<1.0 →subthermally excited • 12CO(2-1) vs13CO(2-1) • Optical depth effect 12CO(2-1) 13CO(2-1) R12/1-0=0.64±0.058 12CO(1-0) 12CO(2-1)

  12. Gas density histogram • Statistics of averaged gas density • Relative volume in Msun pc-3 bin • Conversion from observational data • Line intensity → molecular gas mass • Line velocity → distance & geometrical depth

  13. Conversion: volume • Distance estimation of each voxel • The kinetic distance v→d • Cross section area in the beam W d= A • Depth of each voxel • Differential of the kinetic distanceDv→Dd • Volume of each voxel • V= W dDd

  14. Conversion: mass density • Molecular gas mass • XCO=1.8x1020 cm-2/(K km s-1) Dame et al. 2001 • Typical intensity ratio T12, T13 → T1-0 • Intensity correlation / simple excitation • N(H2)=XCO ∫Tdv → M(H2) • Volume of each voxel • V= WdDd • Molecular gas density in Msun pc-3 • r =M/V

  15. XCO for 3 CO lines • for 12CO(2-1) • Observed standard ratio R12/1-0=0.64 • X12=X1-0 /R12/1-0=2.9x1020cm-2 /(K km s-1) • for 13CO(2-1) • assumptions • LTE with 10 K • optically thin 13CO(2-1) • abundance 12CO/13CO=60, 12CO/H2=4.3x10-5 • X13=1.1x1021 cm-2 /(K km s-1)

  16. Kinetic model of MWG • The pure circular rotating disk • with IAU standard kinematics • Q0=220km s-1, R0=8.5kpc • Geometrical thickness of Gal. disk • assume: gas is confined in a ±100pc uniform disk • not include the far side volume beyond z>100pc

  17. Gas density histogram • Gas density – volume in MWG • fairly well fit by log-normal • slight depression at high density end

  18. Simple empirical relations • Only simple radiation transfer eq. • TMB,13=η13Tc,13 (1-exp(-τ13)); TMB,12=η12Tc,12 • Linear relations • (η13Tc,13)/(η12Tc,12)=α; η13Tc,13=βτ13 • α, β : 2 constants • Tc,13→ typical τ13

  19. Optical depth correction • Gas density – volume in MWG • t-corrected : well fit by log-normal

  20. Model dependence • Galactic constants (recent VLBI obs.) • W0=Q0/R0=30 km s-1 kpc-1Nagayama et al. 2010 • → Q0=210km s-1, R0=7kpc • Radial variation of XCO • X1-0=1.4x1020exp(r/11) Arimoto et al. 1996 • Thickness of the galactic disk • without any consideration (infinite thick disk) • Reject local gas near the Sun • only Vfar<100 Vnear

  21. GDH with different models • Still log-normal like variable XCO Galactic constants infinitly thick disk only near subcentral

  22. Why log-normal? • Vazquez-Semadeni 1994 • 密度:直前の密度を増幅・減衰する過程 • ランダムな増幅度決定←乱流? • 増幅度は直前の密度の値によらない • 多数の変化 • この場合の現在の密度は… • ρ =ρ0f1f2f3 … fn • よって、logρ= log ρ0 +logf1 +logf2 … +logfn • 中心極限定理からlog ρは正規分布

  23. Nearby galaxies • Sample: Nobeyama CO atlas • Nobeyama 45m telescope • 12CO(1-0) • Gas “Column” Density Histogram

  24. Nobeyama CO atlas Kuno et al. 2007 • 12CO (1-0) survey • with Nobeyama 45m telescope • beamsize: 15 arcsec • RX: BEARS (25 beam SIS) • Spectrometer: AOS

  25. Sample galaxies • 40 spiral galaxies Kuno et al. 2007 • morphology: Sa-Sc • distance: d<25Mpc • inclination: i<70deg (face-on) • IRAS 100um flux >10Jy • no/less interacting

  26. method • ICO(1-0)→ N(H2) • using XCO=1.8x1020 cm-2/(K km s-1) Dame et al. 2001 • Inclination correction • assume a disk with constant thickness

  27. Results • lognormal type: ~24/40 • Non-lognormal type: ~16/40

  28. What controll GDH shape? • correlation coefficient • compare with some parameters • observational effect? • N(pixel), linear resolution, noise level, inclination • No correlation → not due to obs. effects • other obs. property of galaxy? • morphology(SA/SB), molecular mass • No correlation → to study more!

  29. summary • H2 density histogram over MWG • observational counter part of PDF • Some galaxies shows log-normal, although about 40% do not. logr=-2.0[Msun pc-3], s=0.80[dex]

More Related