1 / 36

Kimia Analitik 2 PENGANTAR SPEKTROSKOPI bagian 2

Kimia Analitik 2 PENGANTAR SPEKTROSKOPI bagian 2. Sonny Widiarto Jurusan Kimia FMIPA Universitas Lampung. Spektroskopi Absorpsi Molekul. Absorpsi radiasi UV, vis dan IR sangat luas digunakan untuk identifikasi maupun penentuan spesi anorganik, organik maupun biokimia

yuri
Télécharger la présentation

Kimia Analitik 2 PENGANTAR SPEKTROSKOPI bagian 2

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Kimia Analitik 2PENGANTAR SPEKTROSKOPIbagian 2 Sonny Widiarto Jurusan Kimia FMIPA Universitas Lampung

  2. Spektroskopi Absorpsi Molekul • Absorpsi radiasi UV, vis dan IR sangat luas digunakan untuk identifikasi maupun penentuan spesi anorganik, organik maupun biokimia • Spektroskopi absorpsi molekul UV-vis digunakan dalam analisis kuantitatif dan paling banyak dipakai pada laboratorium kimia maupun klinik dibanding teknik lain • Spektroskopi absorpsi IR merupakan alat yang sangat efektif untuk identifikasi dan penentuan struktur senyawa organik maupun anorganik

  3. Absorbing Species • solvent effect  1,2,3,4-tetrazine Absorption by Organic Compounds • Absorption of radiation by organic molecules in the wavelength region between180 and 780 nm results from interactions between photons and electrons that eitherparticipate directly in bond formation (and are thus associated with more than oneatom) or that are localized about such atoms as oxygen, sulfur, nitrogen, and the halogens.

  4. The wavelength of absorption of an organic molecule depends on how tightly its electrons are bound • single bonds are firmly held their excitation requires energies corresponding to wavelengths in the vacuum ultraviolet region below 180 nm • Electrons in double and triple bonds of organic molecules are not as stronglyheld and are therefore more easily excited by electromagnetic radiation • Unsaturated organic functional groups that absorb in the ultraviolet or visible regions are known as chromophores

  5. Typical spectra for organic compounds

  6. Kromofor • A chromophore is the part of a molecule responsible for its color. The color arises when a molecule absorbs certain wavelengths of visible light and transmits or reflects others. The chromophore is a region in the molecule where the energy difference between two different molecular orbitals falls within the range of the visible spectrum. Visible light that hits the chromophore can thus be absorbed by exciting an electron from its ground state into an excited state.

  7. Saturated organic compounds containing such heteroatoms as oxygen, nitrogen,sulfur, or halogens have nonbonding electrons that can be excited by radiation in the 170- to 250-nm range

  8. Absorption by Inorganic Species • In general, the ions and complexes of elements in the first two transition series absorbbroad bands of visible radiation in at least one of their oxidation states. As a result, these compounds are colored • Absorption occurs when electrons make transitions between filled and unfilled d-orbitals with energies that dependon the ligands bonded to the metal ions. • The energy differences between thesed-orbitals (and thus the position of the corresponding absorption maxima) dependon the position of the element in the periodic table, its oxidation state, and the nature ofthe ligand bonded to it.

  9. Qualitative Applications Solvents • Ultraviolet spectra for qualitative analysis are usually measured using dilute solutionsof the analyte. • For volatile compounds, however, gas-phase spectra are often moreuseful than liquid-phase or solution spectra • Gas-phase spectra can often be obtained by allowing a drop or twoof the pure liquid to evaporate and equilibrate with the atmosphere in a stoppered cuvette. • must be transparent in the regionof the spectrum where the solute absorbs • The analyte must be sufficiently soluble • consider possible interactions of the solvent with the absorbing species

  10. Prosedur • A first step in any photometric or spectrophotometric analysis is the development ofconditions that yield a reproducible relationship (preferably linear) between absorbance and analyte concentration. • Wavelength Selection. • Variables That Influence Absorption the nature of the solvent, the pH of thesolution, the temperature, high electrolyte concentrations, and the presence of interfering substances • The Relationship between Absorbance and Concentration

  11. Metode Standard Adisi

  12. Single-Point Berikut ini adalah contoh metode standard adisi single-point

  13. Multiple-point

  14. Studi Ion Kompleks • Spektrofotometri dapat digunakan untuk penentuan komposisi ion kompleks dalam larutan dan untuk penentuan konstanta pembentukan kompleks • Terdapat 3 teknik dalam mempelajari ion kompleks: (1) metode variasi kontinyu (2) metode perbandingan mol (3) metode perbandingan slope

  15. a). Cara Variasi kontinyu * Kation M + ligan L ==== kompleks ML * Buat konsentrasi M dan L tepat sama * Buat campuran M dan L pada variasi volume, tetapi volume total tetap sama * Ukur serapannya, buat kurva hubungan A terhadap fraksi volume salah satu (M atau L) Ekstrapolasi: Vm/(Vm+VL)= 0,34 VL /(Vm+VL)= 0,66 Perbandingan M:L = 0,34 : 0,66 = 1 : 2 Rumuskompleks: ML2 A 0 0,2 0,4 0,6 0,8 1,0 Vm/(Vm+VL) 1,0 0,8 0,6 0,4 0,2 0,0 VL/(Vm+VL) b). Cara angka banding mol: * padapencampuran [M] konstan ,[L] berubah * Diukurpada dimanasalahsatumenyerapkuat

  16. * Buat kurva A terhadap perbandingan mol ligan (L) dan mol kation A 0 1 2 3 4 5 Mol L/Mol M c). Cara angka banding lereng: * Khusus untuk kompleks lemah (Kstab kecil) * mengukur serapan larutan kompleks dengan kelebihan yang besar dari L atau M * kurva A terhadap [L] total dan A terhadap [M] total

  17. Reaksi: mM + nL == MmLn Pada [M] >>>> maka MmLn ~CL/n An =  b MmLn ~  b CL/n Lereng: Sn = An/CL=  b/n A [M] atau [L] Dengan cara yang sama untuk [L] >> Am =  b MmLn =  b CM/n Lereng Sm = Am/Cm =  b/m Angka banding rasio Sm/Sn= ( b/m)/( b/n) = n/m

  18. Metode variasi kontinyu

  19. Spektrofotometer IR • Dispersif dan FTIR Dispersif

More Related