1 / 43

New Approaches for Spin- and Parity-Dependent Shell Model Nuclear Level Density

New Approaches for Spin- and Parity-Dependent Shell Model Nuclear Level Density. Mihai Horoi , Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA Support from NSF grant PHY-02-44453 is acknowledged. Plan of the Talk. Part I: Methods for Shell Model NLD

zach
Télécharger la présentation

New Approaches for Spin- and Parity-Dependent Shell Model Nuclear Level Density

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. New Approaches for Spin- and Parity-Dependent Shell Model Nuclear Level Density Mihai Horoi, Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA Support from NSF grant PHY-02-44453 is acknowledged Mihai Horoi - Central Michigan Univ

  2. Plan of the Talk • Part I: Methods for Shell Model NLD • Motivation • Sum on partitions vs moments of the whole density • Exponential Convergence Method • Fixed-J Configuration Centroids and Widths • Energy-Dependent Cutoff Description • PRC 67, 054309(2003), PRC 69, 041307(2004) • Part II: Methods of Removal of the Center-of-Mass Spurious Contribution Mihai Horoi - Central Michigan Univ

  3. Hauser and Feshbach, Phys. Rev 87, 366 (1952) Mihai Horoi - Central Michigan Univ

  4. The Back-Shifted Fermi Gas Model for Nuclear Level Density Mihai Horoi - Central Michigan Univ

  5. A.Adams, G.Mitchell, J.F. Shriner Phys.Lett, B422, 13(1998) 26Al sd-shell model, USD interaction Mihai Horoi - Central Michigan Univ

  6. Data: Table of Isotopes Theory: sd-shell model + USD interaction 28Si: positive parity Mihai Horoi - Central Michigan Univ

  7. p - 102 -1960’s sd - 105 - 1980’s pf - 109 - 1990’s pf5/2-g9/2- 1010 - 2006 Example: 76Sr PRL 92, 232501 pf5/2-g9/2 dimension 11,090,052,440 CMichSM code - m-scheme dimension 250,000,000 on one-processor machine - 150 Lanczos iterations/week Mihai Horoi - Central Michigan Univ

  8. 12 particles in sd model space Mihai Horoi - Central Michigan Univ

  9. Nuclear Shell Model d = 2 (2 j + 1) Mihai Horoi - Central Michigan Univ

  10. Sum on Partitions vs Moments of the Whole Distribution 6 particles in pf5/2 -g9/2 New interaction A. Lisetskiy et al. PRC 2004 Mihai Horoi - Central Michigan Univ

  11. 12 particles in sd model space Mihai Horoi - Central Michigan Univ

  12. 12 particles in sd model space Mihai Horoi - Central Michigan Univ

  13. 6 particles in p-sd model space Mihai Horoi - Central Michigan Univ

  14. Exponential Convergence Method Mihai Horoi - Central Michigan Univ

  15. Exponential Convergence Method for fp-nuclei Mihai Horoi - Central Michigan Univ

  16. Exponential Convergence Method for fp-nuclei Central Michigan Shell Model (CMichSM) code Exact: -203.196 MeV Mihai Horoi - Central Michigan Univ

  17. r,s,.. – orbits, not states Mihai Horoi - Central Michigan Univ

  18. Fixed J Configuration Centroids and Widths C. Jacquemin, Z. Phys. A 303, 135 (1981) Mihai Horoi - Central Michigan Univ

  19. Shell Model vs Fixed-J Centroids and Widths Density of States 28Si: 12 particles in sd, Tz=0 Mihai Horoi - Central Michigan Univ

  20. 28Si: 12 particles in sd, Tz=0 Shell Model vs Fixed-J Centroids and Widths Density of States Mihai Horoi - Central Michigan Univ

  21. Spin Cutoff Factor 28Si: 12 particles in sd, Tz=0 Zeroth-Order: S.S.M. Wong, Nuclear Spectroscopy, Oxford 1986, p. 45,171 Mihai Horoi - Central Michigan Univ

  22. Shell Model <M2> 28Si: 12 particles in sd, Tz=0 Mihai Horoi - Central Michigan Univ

  23. Shell Model <M2> 28Si: 12 particles in sd, Tz=0 Mihai Horoi - Central Michigan Univ

  24. Zeroth-Order <M2> 28Si: 12 particles in sd, Tz=0 Mihai Horoi - Central Michigan Univ

  25. Zeroth-Order <M2> 28Si: 12 particles in sd, Tz=0 Mihai Horoi - Central Michigan Univ

  26. Summary of Part I • Shell Model NLD look very promising, at least up to the particle emission threshold. More comparison with experimental data necessary. • J-dependent SM NLD are very accurately described by a sum of finite range Gaussians with fixed-J centroids and widths, if one knows with good precision the energy of g.s. and yrast states. We derived explicit expression to calculate fixed-J centroids and widths. • Exponential Convergence Method (ECM) proves to be a very powerful tool for finding yrast and non-yrast energies, by doing shell model calculations in truncated model spaces. • J-dependent SM NLD are reasonably well described by spin cutoff formula with exact cutoff factor, except for higher J’s, but not very well described by spin cutoff formula with zeroth-order cutoff factor. Improvement in estimating cutoff factor requires knowledge of higher order moments. Mihai Horoi - Central Michigan Univ

  27. nucl-th/0111068 The Center-of-Mass Problem Mihai Horoi - Central Michigan Univ

  28. Nuclear Shell Model N Mihai Horoi - Central Michigan Univ

  29. The Center-of-Mass Problem Mihai Horoi - Central Michigan Univ

  30. No E (MeV) Ex (MeV) J T 1 -60.0000 0.0000 0.0000 0.0000 2 -60.0000 0.0000 0.0000 0.0000 3 -60.0000 0.0000 0.0000 0.0000 4 -59.6000 0.4000 1.0000 0.0000 5 -59.6000 0.4000 1.0000 0.0000 6 -59.6000 0.4000 1.0000 0.0000 7 -59.6000 0.4000 1.0000 0.0000 8 -59.4000 0.6000 0.0000 1.0000 9 -59.0000 1.0000 1.0000 1.0000 10 -59.0000 1.0000 1.0000 1.0000 11 -59.0000 1.0000 1.0000 1.0000 12 -59.0000 1.0000 1.0000 1.0000 13 -59.0000 1.0000 1.0000 1.0000 14 -58.8000 1.2000 2.0000 0.0000 15 -58.8000 1.2000 2.0000 0.0000 16 -58.8000 1.2000 2.0000 0.0000 17 -58.8000 1.2000 2.0000 0.0000 18 -58.8000 1.2000 2.0000 0.0000 19 -58.2000 1.8000 2.0000 1.0000 20 -58.2000 1.8000 2.0000 1.0000 21 -58.2000 1.8000 2.0000 1.0000 22 -57.6000 2.4000 3.0000 0.0000 23 -57.6000 2.4000 3.0000 0.0000 24 -57.0000 3.0000 3.0000 1.0000 25 -57.0000 3.0000 3.0000 1.0000 26 -56.0000 4.0000 4.0000 0.0000 27 0.0000 60.0000 0.0000 0.0000 No E (MeV) Ex (MeV) J T 1 -40.0000 0.0000 0.0000 0.0000 2 -39.6000 0.4000 1.0000 0.0000 3 -39.0000 1.0000 1.0000 1.0000 4 -38.8000 1.2000 2.0000 0.0000 5 -38.8000 1.2000 2.0000 0.0000 6 -37.6000 2.4000 3.0000 0.0000 7 -37.0000 3.0000 3.0000 1.0000 8 -36.0000 4.0000 4.0000 0.0000 9 -29.6000 10.4000 1.0000 0.0000 10 -29.4000 10.6000 0.0000 1.0000 11 -29.0000 11.0000 1.0000 1.0000 12 -29.0000 11.0000 1.0000 1.0000 13 -28.8000 11.2000 2.0000 0.0000 14 -28.2000 11.8000 2.0000 1.0000 15 -28.2000 11.8000 2.0000 1.0000 16 -27.0000 13.0000 3.0000 1.0000 17 -10.0000 30.0000 0.0000 0.0000 18 -9.6000 30.4000 1.0000 0.0000 19 -9.6000 30.4000 1.0000 0.0000 20 -9.0000 31.0000 1.0000 1.0000 21 -8.8000 31.2000 2.0000 0.0000 22 -8.8000 31.2000 2.0000 0.0000 23 -8.2000 31.8000 2.0000 1.0000 24 -7.6000 32.4000 3.0000 0.0000 25 0.4000 40.4000 1.0000 0.0000 2 particles 6 particles p-sd s-p-sd N = 1 N = 1 Mihai Horoi - Central Michigan Univ

  31. Example: s-p-sd, 6 particles • J N=1(K=1) N=0 • 0 4 =4 2 • 1 2+4+3=9 4 • 2 4+3+1=8 3 • 3 3+1 =4 1 • 1 =1 0 • Total 26 Dimensions of Nonspurious Spaces Mihai Horoi - Central Michigan Univ

  32. Mihai Horoi - Central Michigan Univ

  33. Fixed J Restricted Configuration Widths C. Jacquemin, Z. Phys. A 303, 135 (1981) Mihai Horoi - Central Michigan Univ

  34. Mihai Horoi - Central Michigan Univ

  35. Nhw Nonspurious Level Density Mihai Horoi - Central Michigan Univ

  36. 20Ne: 20 particles in s-p-sd-pf shell model space Mihai Horoi - Central Michigan Univ

  37. 20Ne: 20 particles in s-p-sd-pf shell model space Mihai Horoi - Central Michigan Univ

  38. 20Ne: 20 particles in s-p-sd-pf shell model space Mihai Horoi - Central Michigan Univ

  39. Nonspurious Level Density: (0+2)hw Mihai Horoi - Central Michigan Univ

  40. 10B: 10 particles in s-p-sd-pf shell model space Mihai Horoi - Central Michigan Univ

  41. 10B: 10 particles in s-p-sd-pf shell model space Mihai Horoi - Central Michigan Univ

  42. Nonspurious Level Density: General Mihai Horoi - Central Michigan Univ

  43. Summary • We derived explicit expressions to calculate fixed-J centroids and widths for restricted set of configurations, such Nhw configurations • We found recursive formulae to calculate the dimensions of nospurious spaces • We found recursive formulae for calculating exactly the nonspurious level density when one knows the level density for a restricted set of configurations, such Nhw configurations • Using our method of calculating the level density for restricted set of configurations we can calculate very accurately the nonspurious level density Mihai Horoi - Central Michigan Univ

More Related