1 / 72

Introduction

Status of the Experiment Polarizing antiprotons E. Steffens – University of Erlangen- Nürnberg for the PAX Collaboration http://www.fz-juelich.de/ikp/pax/. Introduction. We have proposed a method to polarize antiprotons by „ spin-filtering “. Introduction.

zada
Télécharger la présentation

Introduction

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Status of the ExperimentPolarizing antiprotonsE. Steffens – University of Erlangen-Nürnbergfor the PAX Collaborationhttp://www.fz-juelich.de/ikp/pax/ PAX Experiment

  2. Introduction Wehaveproposeda methodtopolarizeantiprotonsby „spin-filtering“ PAX Experiment

  3. Introduction New initiative, drivenbythe FAIR-projectat GSI High Energy Storage Ring (HESR) for a beam of antiprotons Isitpossible, and how, to providepolarizedantiprotonbeamsin HESR ? PAX Experiment

  4. Introduction • Ourknowledgeabout pp interactionis limited: • Lack ofpolarizationdata! Restrictedtosingle-spin (A0n00, A000n) data.Nospin-correlationdata! • Attemptsat LEAR (1983-1996) toproducepolarizedstoredantiprotonswereunsuccessful! • Revival ofideasaboutstoredpolarizedantiprotons: → PAX experimentat FAIR (see PAX TP hep-ex/0505054) • Polarized antiprotons: A missing tool • Nucleon-antinucleon scattering at the parton level • Hadron spectroscopy • Nucleon-antinucleon scattering at low energy PAX Experiment

  5. PAX→ Polarized Antiprotons Physics Case: Transversity distribution of the nucleon in Drell-Yan: • Last leading-twist missing piece of the QCD description of the partonic structure of the nucleon • Direct measurement of h1q(x,Q2) of the proton for valence quarks(ATT in Drell-Yan >0.2) • transversely polarized proton beam or target () • transversely polarized antiproton beam () • + many polarization observables in pp scattering PAX Experiment

  6. Quark Transversity Distribution in Drell-Yan Double transversespinasymmetry: First directmeasurement: No competitive processes PAX Experiment

  7. Plan of talk • Polarizingantiprotons … • Proposals, ideas, calculations, … • Presentstatusof pp interactionmodels • Experiments • FILTEX (TSR) • e p spinflip cross sectionmeasurement at COSY • Spin-filteringat AD/CERN • Spin-filteringat COSY • Conclusion • Task taken on bythe PAX Collaboration:~100 members • 16 institutions • Spokespersons: P. Lenisa (Ferrara), F. Rathmann (Jülich) PAX Experiment

  8. TwoMethods: Spin-dependentlossversusspinflip For an ensembleofspin ½ particleswithprojections+() and– () PAX Experiment

  9. Proposedmethods: Spin flip →Need for an experimental testofthisidea! PAX Experiment

  10. epspinflipstudiesat COSY: Idea • Use protonbeam and co-moving electrons • Turn experiment around: p e →p e into p e → p e • i.e. observe depolarization of a polarized proton beam Velocity mismatch COSYelectron cooler(detuned) PAX Experiment

  11. epspinflipstudies at COSY: Tools • Use (transversely) polarized proton beam circulating in COSY • Switch on (detuned) electron cooler to depolarize proton beam • Analyzeproton polarization with internal D2-cluster target of ANKE ANKE cluster target & STT e-cooler p Tp = 49.3 MeV PAX Experiment

  12. epspinflipstudiesatCOSY: Feasibility After detuning, proton energy slowly follows electron energy: U = 245 V  ve = 1.5·10-3 c fR = 40 Hz in 5 s: vp/ ve~0.03 Detuning e-cooler for 5 s onlyensuresthatprotonmomentumstaysfixed. PAX Experiment

  13. p D2 epspinflipstudiesatCOSY: Polarimetry pd elastic scattering:detection in two (L-R) symmetric Silicon Tracking Telescopes Deuteron identification d p PAX Experiment

  14. epspinflip cross section at COSY: Result Nominal proton energy in electron rest frame (keV) 0 1 2 3 4107 D.Oellers et al., Physics Letters B 674 (2009) 269 2107 depol (barn) 0 -2107 -4107 0 110-3 210-3 310-3 |Relative velocity of electrons in proton rest frame| (c) No effect observed: measured cross sections at least 6 orders-of-magnitude smaller than the predicted 1013 b. Meanwhile, Mainz group discovered numerical problems in the calculation → two errata. Analytical calculation by Novosibirsk group (Strakhovenko et al): Spin flip negligible! PAX Experiment

  15. Spin-dependentloss: Spin-filtering Polarizationbuild-upof an initiallyunpolarizedparticle beam byrepeatedpassagethrough a polarizedhydrogen target in a storage ring: PAX Experiment

  16. P beam polarization Q target polarization k || beam direction σtot = σ0 + σ1·P·Q + σ2·(P·k)(Q·k) For initially equally populated spin states:  (m=+½) and  (m=-½) transverse case: longitudinal case: Unpolarized anti-p beam Polarized target Polarization Buildup PAX Experiment

  17. P beam polarization Q target polarization k || beam direction Polarized anti-p beam σtot = σ0 + σ1·P·Q + σ2·(P·k)(Q·k) For initially equally populated spin states:  (m=+½) and  (m=-½) transverse case: longitudinal case: Unpolarized anti-p beam Polarization Buildup Polarizedtarget PAX Experiment

  18. I/I0 0.8 Beam Polarization 0.6 0.4 0.2 0 2 6 4 t/τbeam Figure of Merit and optimum filtering time statistical error of a double polarization observable (ATT) Measuring time t to achieve a certain error δATT t ~ FOM = P2·I (N ~ I) Optimimum time for polarization buildup given by maximum of FOM(t) tfilter = 2·τbeam PAX Experiment

  19. Spin-filteringat TSR: „FILTEX“ – proof-of-principle F. Rathmann et al., PRL 71, 1379 (1993) Polarization build-up process quantitatively understood! →Spin filteringworksforprotons PAX submitted new proposal to find out how well spin filtering works for antiprotons: Measurement ofthe Spin-Dependenceofthe pp Interaction attheAD Ring(CERN-SPSC-2009-012 / SPSC-P-337) • TSR spin filtering with protons:σexp=73 ± 6 mb • Averagetheoreticalvalue:σtheo=86 ± 2 mb • Goodagreement: ~2 σdiscrepancy • Brief summary in: D. Oellers et al., Phys. Lett. B 674, 269 (2009). PAX Experiment

  20. pp interactionmodels PAX Experiment

  21. Spin-dependence of the pbar-p interaction • Measurement of the polarization buildup equivalent to the determination of σ1andσ2 • Once a polarized antiproton beam is available, spin-correlation data can be measured at AD (50-500 MeV) Model A: T. Hippchenet al., Phys. Rev. C 44, 1323 (1991). Model OBEPF:J. Haidenbauer, K. Holinde, A.W. Thomas, Phys. Rev. C 45, 952 (1992). Model D: V. Mull, K. Holinde, Phys. Rev. C 51, 2360 (1995). PAX Experiment

  22. PAX at the AD (the only place worldwide) Siberian snake Electron cooler PAX target section PAX Experiment

  23. Experimental Setup Atomic Beam Source Target chamber: Detector system + storage cell Breit-Rabi Polarimeter Six additional quadrupoles PAX Experiment

  24. Polarized Target Injected hyperfine states from ABS QxQyQz: Quantization axis is reoriented by a weak magnetic guide field of 10 G z y x BRP measures occupation numbers of different HFS + corrections → Target Polarization PAX Experiment

  25. Atomic Beam Source and Breit-Rabi Polarimeter ABS Electric power Cooling water Target chamber COSY/AD beam axis Breit-Rabi polarimeter PAX Experiment

  26. Atomic Beam Source and Breit-Rabi Polarimeter BRP vacuum HFT Coils power ABS/TC vacuum QMAs Bake-out PAX Experiment

  27. Target chamber, cell and detector system Guide field coils (x, y, z) Atomic beam movable flow limiter Stored beam Storage cell: jet density 100 Silicon strip detectors PAX Experiment

  28. Detector System 12 x 2 HERMES recoildetectors+ 12 x 1 PAX STT detectors 1 PAX Layer 1 PAX STT 2 HERMES Target cell + Detectorswithcoolingsystemandshielding Detectorssurroundingtheopenablestoragecell Fullsystemconsistingof36 Detectors PAX Experiment

  29. Openable storage cell P. Belochitsky - CERN AD beam envelope at injection requires openable storage cell opened closed PAX Experiment

  30. AD optics (P. Belochitsky - CERN) Beam is injected with low-βsectionmoderatelypowered on. Atexperimentenergy (T<450 MeV), β-functionsare „squeezed“ byfullypowering on low-βmagnets. Thenstoragecellisclosedand gas isinjected. “Squeezed” At injection PAX Experiment

  31. Expectedpolarizations after filteringfortwolifetimes Limit Model A: Productionof longitudinal polarization θacc > 13 mrad→ P(2∙τb) changesonlymarginally PAX Experiment

  32. Main phasesofinstallationat AD Installation of six magnets for the low-β insertion Phase 1 Installation of the target chamber: Machine acceptance studies. Stacking studies Phase 2 Spin-filtering measurements up to 70 MeV with transverse beam polarization Phase 3 • 2009 • 2010 • 2011 PAX Experiment

  33. Time plan for AD PAX ready to set sequence into motion by installing low-β section into the AD end of this year! PAX Experiment

  34. Phase 1: • Layout of vacuum system, based on suggestions by the CERN group(→ NEG works) • Pumping crosses • Turbo pump 200 l/s • Ion getter pump 400 l/s • 2 x SAES GP500 NEG pump 1900 l/s • All AD magnets remain in place • Installation of six magnets for the low-β insertion. • Commissioning of the low-β section • Central quad taken out only after commissioning • Same performance of machine as before PAX Experiment

  35. Spin-filtering studies at COSY Main purpose: Repeat spin-filtering with protons. No surprises expected Commissioning of the experimental setup for AD Proposal to COSY PAC submitted in July 2009 Low-βmagnet installation at COSY Target chamberwithstoragecellanddetectorsystem COSY-Quadupoles ABS BRP Low-βquadrupoles PAX Experiment

  36. Time plan for COSY PAX Experiment

  37. Conclusions • Polarized antiprotons: a missing tool for spin physics • First measurement of the spin-dependence of pbar-p interaction • AD unique machine! • Commissioning of equipment at COSY • Clear strategy and commitment by PAX Collaboration • Now and hereornever! PAX Experiment

  38. Spare transparencies PAX Experiment

  39. HadronPhysics „DreamMachine“ … an asymmetric (double-polarized) proton (15 GeV/c) – antiproton (3.5 GeV/c) colliderusing HESR, CSR and APR p p PAX Experiment

  40. 1year run: 10 % precision on the h1u(x) in the valence region Pp=30% Pp=10% Anselmino et al. PLB 594,97 (2004) Similar predictions by Efremov et al., Eur. Phys. J. C35, 207 (2004) h1ufrom p-pDrell-Yan at PAX • u-dominance • |h1u|>|h1d| PAX : M2/s=x1x2~0.02-0.3 valence quarks (ATTlarge ~ 0.2-0.3) PAX Experiment

  41. Proposedmethods: Somehistory … EPAC 1988 • Stern-Gerlach splitting never tried (huge effort) PAX Experiment

  42. I/I0 0.8 Beam Polarization 0.6 0.4 0.2 0 2 6 4 t/τbeam Figure of Merit and optimum filtering time statistical error of a double polarization observable (ATT) Measuring time t to achieve a certain error δATT t ~ FOM = P2·I (N ~ I) Optimimum time for polarization buildup given by maximum of FOM(t) tfilter = 2·τbeam PAX Experiment

  43. epspinflipstudiesatCOSY: Principle (1) • Use (transversely) polarized proton beam circulating in COSY • Switch on (detuned) electron cooler to depolarize proton beam • Analyzeproton polarization with internal D2-cluster target of ANKE ANKE cluster target & STT e-cooler p Tp = 49.3 MeV PAX Experiment

  44. epspinflipstudiesatCOSY: Feasibility After detuning, proton energy slowly follows electron energy: U = 245 V  ve = 1.5·10-3 c fR = 40 Hz in 5 s: vp/ ve~0.03 Detuning e-cooler for 5 s onlyensuresthatprotonmomentumstaysfixed. PAX Experiment

  45. tuned cycle detuned cycle Target off Target on 27095 4  108 Ecooler Voltage (V) Number of Beam Particles Telectron-off 49·5 s Tdetuned 49·5 s +245 2  108 26850 Tnominal 49·5 s Tnominal 49·5 s 1000 0 200 400 600 800 1000 0 200 400 600 800 time (s) Compare cycle-by-cycle: No electrons to detuned electrons epspinflipstudiesatCOSY: Cycle setup PAX Experiment

  46. 0 epspinflipstudiesat COSY: Super Cycle Pdetuned Ptuned Beam current DeterminePtunedandPdetunedfromidenticalcycles, exceptfordetuned cooler PAX Experiment

  47. Tuned and detuned beam polarizations 0.6 Beam Polarization 0.4 tuned cooler 0.2 detuned cooler 0 -4 -3 -2 -1 0 1 2 3 4 Proton kinetic energy in electron rest frame (keV) p D2 Depolarization Studies at COSY: Results (1) pd elastic scattering:detection in two (L-R) symmetric silicon tracking telescopes PAX Experiment

  48. Measured ratio of polarizations vs Proton Kinetic energy in electron rest frame 1.2 Pdetuned/Ptuned 1 0.8 -4 -3 -2 -1 0 1 2 3 4 Nominal proton kinetic energy in electron rest frame (keV) p D2 epspinflipstudiesatCOSY: Results(1) pd elastic scattering:detection in two (L-R) symmetric silicon tracking telescopes PAX Experiment

  49. epspinflipstudiesatCOSY: New calc´s ~ 1 mb→ No effect expected! PAX Experiment

  50. Atomic Beam Source and Breit-Rabi Polarimeter BRP vacuum HFT Coils power ABS/TC vacuum QMAs Bake-out PAX Experiment

More Related