1 / 88

880 likes | 1.06k Vues

HEAPS. Amihood Amir Bar Ilan University 2014. Sorting. Bubblesort: Until no exchanges: For i=1 to n-1 if A[i]>A[i+1] then exchange their values end end Time : O ( n 2 ). 42. 77. "Bubbling Up" the Largest Element. Traverse a collection of elements Move from the front to the end

Télécharger la présentation
## HEAPS

**An Image/Link below is provided (as is) to download presentation**
Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.
Content is provided to you AS IS for your information and personal use only.
Download presentation by click this link.
While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.
During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

**HEAPS**Amihood Amir Bar Ilan University 2014**Sorting**Bubblesort: Until no exchanges: For i=1 to n-1 if A[i]>A[i+1] then exchange their values end end Time:O(n2)**42**77 "Bubbling Up" the Largest Element Traverse a collection of elements • Move from the front to the end • “Bubble” the largest value to the end using pair-wise comparisons and swapping Swap 1 2 3 4 5 6 101 12 42 35 5 77**35**77 "Bubbling Up" the Largest Element Traverse a collection of elements • Move from the front to the end • “Bubble” the largest value to the end using pair-wise comparisons and swapping 1 2 3 4 5 6 Swap 101 12 77 35 5 42**12**77 "Bubbling Up" the Largest Element Traverse a collection of elements • Move from the front to the end • “Bubble” the largest value to the end using pair-wise comparisons and swapping 1 2 3 4 5 6 Swap 101 12 35 77 5 42**"Bubbling Up" the Largest Element**Traverse a collection of elements • Move from the front to the end • “Bubble” the largest value to the end using pair-wise comparisons and swapping 1 2 3 4 5 6 101 77 35 12 5 42 No need to swap**5**101 "Bubbling Up" the Largest Element Traverse a collection of elements • Move from the front to the end • “Bubble” the largest value to the end using pair-wise comparisons and swapping 1 2 3 4 5 6 Swap 101 77 35 12 5 42**"Bubbling Up" the Largest Element**Traverse a collection of elements • Move from the front to the end • “Bubble” the largest value to the end using pair-wise comparisons and swapping 1 2 3 4 5 6 101 5 77 35 12 42 Largest value correctly placed**Sorting**Selection sort: For i=1 to n do For j=i+1 to n do If A[i]>A[j] then exchange them end end Time:= O(n2)**42**77 Selecting the Smallest Element Traverse a collection of elements • Move from the front to the end • Select the smallest value using pair-wise comparisons and swapping Swap 1 2 3 4 5 6 101 12 42 35 5 77**Selecting the Smallest Element**Traverse a collection of elements • Move from the front to the end • Select the smallest value using pair-wise comparisons and swapping Swap 1 2 3 4 5 6 35 42 101 12 77 35 5 42**Selecting the Smallest Element**Traverse a collection of elements • Move from the front to the end • Select the smallest value using pair-wise comparisons and swapping Swap 1 2 3 4 5 6 35 12 42 35 101 12 77 5**Selecting the Smallest Element**Traverse a collection of elements • Move from the front to the end • Select the smallest value using pair-wise comparisons and swapping 1 2 3 4 5 6 12 42 35 101 77 5 No need to swap**Selecting the Smallest Element**Traverse a collection of elements • Move from the front to the end • Select the smallest value using pair-wise comparisons and swapping Swap 1 2 3 4 5 6 12 5 42 35 12 101 77 5**Selecting the Smallest Element**Traverse a collection of elements • Move from the front to the end • Select the smallest value using pair-wise comparisons and swapping 1 2 3 4 5 6 5 42 35 12 101 77 Smallest value correctly placed**Sorting**Insertion sort: For i=1 to n do Insert A[i+1] into appropriate (sorted) position in A[1],…,A[i] end Time:= O(n2)**Keeping Prefix Sorted**Traverse a collection of elements • Move from the front to the end • Keep the prefix sorted throughout 1 2 3 4 5 6 101 12 42 35 5 77**Keeping Prefix Sorted**Traverse a collection of elements • Move from the front to the end • Keep the prefix sorted throughout 1 2 3 4 5 6 101 12 77 35 5 42**Keeping Prefix Sorted**Traverse a collection of elements • Move from the front to the end • Keep the prefix sorted throughout 1 2 3 4 5 6 101 12 77 35 5 42**Keeping Prefix Sorted**Traverse a collection of elements • Move from the front to the end • Keep the prefix sorted throughout 1 2 3 4 5 6 101 12 77 35 5 42**Keeping Prefix Sorted**Traverse a collection of elements • Move from the front to the end • Keep the prefix sorted throughout 1 2 3 4 5 6 101 12 35 77 5 42**Keeping Prefix Sorted**Traverse a collection of elements • Move from the front to the end • Keep the prefix sorted throughout 1 2 3 4 5 6 101 12 42 77 5 35**Keeping Prefix Sorted**Traverse a collection of elements • Move from the front to the end • Keep the prefix sorted throughout 1 2 3 4 5 6 101 12 42 77 5 35**Keeping Prefix Sorted**Traverse a collection of elements • Move from the front to the end • Keep the prefix sorted throughout 1 2 3 4 5 6 101 77 42 12 5 35**Keeping Prefix Sorted**Traverse a collection of elements • Move from the front to the end • Keep the prefix sorted throughout 1 2 3 4 5 6 101 77 12 42 5 35**Keeping Prefix Sorted**Traverse a collection of elements • Move from the front to the end • Keep the prefix sorted throughout 1 2 3 4 5 6 101 77 35 42 5 12**Keeping Prefix Sorted**Traverse a collection of elements • Move from the front to the end • Keep the prefix sorted throughout 1 2 3 4 5 6 101 77 35 42 5 12**Keeping Prefix Sorted**Traverse a collection of elements • Move from the front to the end • Keep the prefix sorted throughout 1 2 3 4 5 6 101 77 35 42 5 12**Keeping Prefix Sorted**Traverse a collection of elements • Move from the front to the end • Keep the prefix sorted throughout 1 2 3 4 5 6 101 77 35 42 5 12**Keeping Prefix Sorted**Traverse a collection of elements • Move from the front to the end • Keep the prefix sorted throughout 1 2 3 4 5 6 101 77 35 42 5 12**Keeping Prefix Sorted**Traverse a collection of elements • Move from the front to the end • Keep the prefix sorted throughout 1 2 3 4 5 6 5 101 77 35 42 12**Keeping Prefix Sorted**Traverse a collection of elements • Move from the front to the end • Keep the prefix sorted throughout 1 2 3 4 5 6 77 101 5 35 42 12**Keeping Prefix Sorted**Traverse a collection of elements • Move from the front to the end • Keep the prefix sorted throughout 1 2 3 4 5 6 77 101 42 35 5 12**Keeping Prefix Sorted**Traverse a collection of elements • Move from the front to the end • Keep the prefix sorted throughout 1 2 3 4 5 6 77 101 42 5 35 12**Keeping Prefix Sorted**Traverse a collection of elements • Move from the front to the end • Keep the prefix sorted throughout 1 2 3 4 5 6 77 101 42 12 35 5**Keeping Prefix Sorted**Traverse a collection of elements • Move from the front to the end • Keep the prefix sorted throughout 1 2 3 4 5 6 77 101 42 12 35 5**Complexity**The Time of all algorithms we saw: O(n2) Can we do better?**Merge Sort**Based on the Merging operation. Given two sorted arrays: A[1],…,A[n] and B[1],…,B[m]. merge them into one sorted array: C[1],…,C[n+m]**Merging**Pa, Pb, Pc <- 1 While (Pa < n+1 and Pb < m+1) If A[Pa] ≤ B[Pb] then C[Pc] <- A[Pa] Pa <- Pa+1 Pc <- Pc+1 else C[Pc] <- B[Pb] Pb <- Pb+1 Pc <- Pc+1 end**Merging**If Pa=n+1 and Pb < m+1 then for i=Pb to m do C[Pc] <- B[i] Pc <- Pc +1 end If Pb=n+1 and Pa < m+1 then for i=Pa to n do C[Pc] <- A[i] Pc <- Pc +1 end end Algorithm**Merging**A: B: C:**Merging**A: B: C:**Merging**A: B: C:**Merging**A: B: C:**Merging**A: B: C:**Merging**A: B: C:**Merging**A: B: C:**Merging**A: B: C:**Merging**A: B: C: Time:O(n+m) Linear !!!**Merge Sort**A recursive sorting algorithm: Mergesort(A) If n=1 then Return(A) else Split A[1],…,A[n] to two length n/2 arrays: A[1],…,A[n/2] and A[n/2+1],…,A[n] Mergesort(A[1],…,A[n/2]) Mergesort(A[n/2+1],…,A[n]) Merge(A[1],…,A[n/2], A[n/2+1],…,A[n], B) A <- B Return(A)

More Related