1 / 33

Neutrons and Soft Matter

Neutrons and Soft Matter. Aurel RADULESCU Jülich Centre for Neutron Science JCNS, Outstation at MLZ, 85747 Garching, Germany 7 July 2014. Outline. Soft Matter – definition , examples , applications Soft Materials – structural and dynamical properties

Télécharger la présentation

Neutrons and Soft Matter

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Neutrons and Soft Matter Aurel RADULESCU Jülich Centrefor Neutron Science JCNS, Outstation at MLZ, 85747 Garching, Germany 7 July 2014

  2. Outline • Soft Matter – definition,examples, applications • Soft Materials – structuralanddynamicalproperties • Relevanceof Neutron Scattering • Small-Angle Neutron Scattering (SANS) • Neutron Spin-Echo (NSE) • SANS and NSE at JCNS and FZJ • Conclusions

  3. Soft Matter – Definition Soft Materials • “molecular systems giving a strong response to very weak command signal” PG deGennes (1991) • - easily deformed by small external fields, including thermal stresses and thermal fluctuations • - relevant energy scale comparable with RT thermal energy • - subtle balance between energy and entropy  rich phase behavior and spontaneous complexity crystallinestate Soft Matter liquid state structure: shortrangetolongrange order dynamicresponse: elasticandviscousproperties

  4. Soft Materials Soft Matter materials: common features • structural units: much larger than atoms • large molecules, assemblies of molecules that move together • large, nonlinear response to weak forces • slow, non-equilibrium response mechanicalresponserubbers elongatedseveralhundred % ofinitiallenght no linear relationbetween stress andstrain response time liquid ~ 10-9 s polymer orcolloidalsolution ~ 1 … 10-4 s

  5. Soft Matter – qualitative and quantitative “Soft” – qualitative property shear modulus G – quantitative parameter restoring force of a deformed material which tends to recover its own shape (elastic materials) “softness” – smallness of G bulk modulus K of soft mater same order as for metals shearmodulus ShearmodulusG metals: some 10 GPa soft matter: < 0.1 GPa liquids: 0 Gpa Bulk modulus K metalsand soft matter: >1 GPa bulkmodulus

  6. Example: molecularvsmacromolecularcrystals macromolecular (colloidal) crystals: molecule size ~1mm molecular crystals (NaCl): unit size ~ 1Å unit size molecular crystal << unit size colloidal crystal F – shearingforce DL – crystaldeformation G ~ energy/(length)3 typicalinteractionenergy ~ kBT Gcolloidalcrystalis 12 ordersof magn. smallerthanGusualcrystal S. Kaufmann et al. J Mater Sci (2012) 47:4530–4539

  7. Examplesof soft matter systems • Complexfluidsincludingcolloids, polymers, surfactants, foams, gels, liquid crystals, granular andbiologicalmaterials. Y. Roiter and S. Minko AFM biological membrane

  8. Soft-Matter Triangle

  9. Applications– everydaylife

  10. Soft Matter – high-techapplications polymericand soft compositematerialsas additives foroilindustry tyrescontainingnanostructuredaggregates: lessenergyto roll → save fuel understandingformationofnanoparticles: keyfornewproductsfromdetergentstocosmetics environmentallyfriendlycleaners

  11. Staticproperties – statisticalparameters statistical „randomwalk“ effect segmentlength: a numberofsegments: N contourlength: Na End-to-end length Fulllengthcontour: lengthofthestretched polymer L=((bondlength)*(cos(109.47°-90°)/2))*(#C-1) Radius ofgyration (averageextensionfromthecenterofmass)

  12. Polymer architecture homopolymer heteropolymer (diblock)

  13. Polymer aggregates – shape distance distribution function for different shapes

  14. Polymer conformation long-range repulsion R L  aN good solvent R  aN3/5 q-solvent R aN1/2 poor solvent R aN1/3 Monomer size a~0.1nm Number of monomers N~102 – 1010 Contour length L~10nm – 1m homopolymer star-like block copolymer: n and m – number of repetitive units for the blue-solvophilic and the red solvophobic blocks

  15. Polymer morphology Morphologycal behavior of PEP-PEO in solution

  16. Dynamicalproperties A. Wischnewski & D. Richter, Soft Matter vol. 1, 2006 Ed. G. Gompper & M. Schick polymer chains in the melt 3D Fickiandiffusion localreptation each chain can be considered to be constrained within a tube – topological constraints Rousedynamics center-of-massdiffusion

  17. Dynamicalproperties – tubeconcept Lateral confinement Rousemodel – dynamicsofGaussianchain at intermediate scale Localreptation – randomwalk Diffusion alongthetube - reptation

  18. Neutron Scattering – key in Soft-Matter

  19. Lengthscale – Time scale

  20. Neutrons exhibitveryspecialproperties • Organicandbiologicalcompoundsconsistofprimarily C, H, N, O • Hydrogen (H) and Deuterium (D) scatterverydifferently • Simple H/D substitutionallowshighlighting / maskingstructures Ideal for Soft Matter

  21. ScatteringTheory

  22. Small-angle neutronscattering

  23. Small-angle neutronscattering

  24. The form factor intraparticlecorrelations

  25. Contrast Variation hPS-dPBmicelles (Fpol=0.25%) in different solventsfor different contrasts R. Lund et al., 2013

  26. Experimental aspects – resolutionandpolydispersity

  27. SANS - Examples PEP-PEO J. Stellbrink et al., 2005 structure factor effect effect of asymmetry in MW L. Willner et al., 2010

  28. Neutron Spin-Echo Dl/l=10-20% decouplingdetectabilityoftinyvelocitychangescausedbythescatteringprocessfromthewidthoftheincomingvelocitydistribution thekeyistheneutronspin

  29. Neutron Spin-Echo • relaxation-type scattering, functionof time • J – integral ofthemagneticinduction • – gyromagneticratio D. Richter et al., 1994 • meaningofthescatteringfunction • deuterated polymer matrixcontaining a few % protonatedchains → coherentsinglechaindynamicsin the SANS regime • sample containingonlyprotonatedchains → incoherentscatteringfunction– self-correlationofprotonsofchainsegments → segmental mean-squaredisplacement <r2(t)> fit – Rousemodel Q=1nm-1

  30. Neutron Spin-Echo A. Wischnewski et al., 2003 plateau – topologicalconstraints theonlyfreeparameter – thetubediameter: d=6nm PEP melt, 492K Tube concept – pair correlationfunctionof a singlechain in themelt

  31. SANS and NSE at JCNS@MLZ KWS-2 SANS diffractometerl=4.5 .. 20Å; Dl/l=2%..20% max. flux 2x108 ncm-2 s-1 Q-range: 1x10-4 .. 0.5Å-1 (withlenses) J-NSE spectrometer l=4.5 .. 16Å; Dl/l=10% Fourier time ranget=2ps.. 350ns

  32. Phase behaviorof C28H57-PEO M. Amann et al., 2014 expected change in aggregation number Nagg → exploring the phase diagram usingchopper at KWS-2: solid-solid phasetransition fcc→ bcc observed f=15% f=30% fcc

  33. Conclusions • Soft Matter Systems – greatrichnessofproperties, complexsystems • SANS – uniquemethodforstructuralinvestigation • NSE – uniquemethodfordynamicalinvestigation • KWS-2 & J-NSE – dedicatedneutronscatteringinstrumentsto soft-matter systems

More Related