1 / 25

Combining pattern-based and machine learning methods to detect definitions for eLearning purposes

Combining pattern-based and machine learning methods to detect definitions for eLearning purposes. Eline Westerhout & Paola Monachesi. Overview. Extraction of definitions within eLearning Types of definitory contexts Grammar approach Machine learning approach Conclusions Future work

Télécharger la présentation

Combining pattern-based and machine learning methods to detect definitions for eLearning purposes

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Combining pattern-based and machine learning methods to detect definitions for eLearning purposes Eline Westerhout & Paola Monachesi

  2. Overview • Extraction of definitions within eLearning • Types of definitory contexts • Grammar approach • Machine learning approach • Conclusions • Future work • Discussion

  3. Extraction of definitions within eLearning • Definition extraction: • question answering • building dictionaries from text • ontology learning • Challenges within eLearning: • corpus • size of LOs

  4. Types - I • is_def: Gnuplot is een programma om grafieken te maken ‘Gnuplot is a program for drawing graphs’ • verb_def: E-learning omvat hulpmiddelen en toepassingen die via het internet beschikbaar zijn en creatieve mogelijkheden bieden om de leerervaring te verbeteren . ‘eLearning comprises resources and applications that are available via the internet and provide creative possibilities to improve the learning experience’

  5. Types - II • punct_def • Passen: plastic kaarten voorzien van een magnetische strip, [...] toegang krijgt tot bepaalde faciliteiten. • ‘Passes: plastic cards equipped with a magnetic strip, that [...] gets access to certain facilities. ’ • pron_def • Dedicated readers. Dit zijn speciale apparaten, ontwikkeld met het exclusieve doel e-boeken te kunnen lezen. • ‘Dedicated readers. These are special devices, developed with the exclusive goal to make it possible to read e-books.’

  6. Grammar approach • General • Example • Results

  7. Identification of definitory contexts • Make use of the linguistic annotation of LOs (part-of-speech tags) • Domain: computer science for non-experts • Use of language specific grammars • Workflow • Searching and marking definitory contexts in LOs (manually) • Drafting local grammars on the basis of these examples • Apply the grammars to new LOs

  8. Grammar example Een vette letter is een letter die zwarter wordt afgedrukt dan de andere letters.

  9. <rule name="simple_NP" > <seq> <and> <ref name="art"/> <ref name="cap"/> </and> <ref name="adj" mult="*"/> <ref name="noun" mult="+"/> </seq> </rule> Een vette letter is een letter die zwarter wordt afgedrukt dan de andere letters.

  10. <query match="tok[@ctag='V' and @base='zijn' and @msd[starts-with(.,'hulpofkopp')]]"/> Een vette letter is een letter die zwarter wordt afgedrukt dan de andere letters.

  11. <rule name="noun_phrase"> <seq> <ref name="art" mult="?"/> <ref name="adj" mult="*" /> <ref name="noun" mult="+" /> </seq> </rule> Een vette letter is een letter die zwarter wordt afgedrukt dan de andere letters.

  12. <rule name="is_are_def"> <seq> <ref name="simple_NP"/> <query match="tok[@ctag='V' and @base='zijn' and @msd[starts-with(.,'hulpofkopp')]]"/> <ref name="noun_phrase" /> <ref name="tok_or_chunk" mult="*"/> </seq> </rule> Een vette letter is een letter die zwarter wordt afgedrukt dan de andere letters.

  13. <definingText> • <markedTerm> • <tok sp="n" msd="onbep,zijdofonzijd,neut" ctag="Art" base="een" id="t214.2">Een</tok> • <tok sp="n" msd="attr,stell,vervneut" ctag="Adj" base="vet" id="t214.3">vette</tok> • <tok sp="n" msd="soort,ev,neut" ctag="N" base="letter" id="t214.4">letter</tok> • </markedTerm> • <tok sp="n" msd="hulpofkopp,ott,3,ev" ctag="V" base="zijn" id="t214.5">is</tok> • <tok sp="n" msd="onbep,zijdofonzijd,neut" ctag="Art" base="een" • id="t214.6">een</tok> • <tok sp="n" msd="soort,ev,neut" ctag="N" base="letter" id="t214.7">letter</tok> • ... • <tok sp="n" msd="onbep,neut,attr" ctag="Pron" base="andere" • id="t214.14">andere</tok> • <tok sp="n" msd="soort,mv,neut" ctag="N" base="letter" id="t214.15">letters</tok> • <tok sp="n" msd="punt" ctag="Punc" base="." id="t214.16">.</tok> • </definingText>

  14. Results (grammar)

  15. Machine learning • Features • Configurations • Results

  16. Features • Text properties: bag-of-words, bigrams, and bigram preceding the definition • Syntactic properties: type of determiner within the defined term (definite, indefinite, no determiner) • Proper nouns: presence of a proper noun in the defined term

  17. Configurations

  18. Results – is_def (ML)

  19. Results – is_def (final)

  20. Results – punct_def (ML)

  21. Results – punct_def (final)

  22. Final results • precision  (50 % and 40 %) • recall  (20 % and 30 %) • f-score  (30 % and 25 %)

  23. Related work • Question answering: • Fahmi & Bouma (2006) • Miliaraki & Androutsopoulos (2004) • Glossary creation: • Muresan & Klavans (2002) • Ontology learning: • Storrer & Wellinghof (2006) • Walter & Pinkal (2006)

  24. Future work • try different features • evaluate other classifiers • extend to all types of definitions • scenario based evaluation of the GCD

  25. Discussion • Good features? • Apply filtering: yes or no? • How to evaluate the performance? • scenario based? • compare with manual annotation? • ...

More Related