1 / 7

MOON ... M olybdenum O bservatory O f N eutrinos

MOON ... M olybdenum O bservatory O f N eutrinos. H. Ejiri et al. PRL 85 (2000) 2917. Physics Goals:. Low Energy Solar Neutrino Spectroscopy Search for 0  in 100 Mo Supernova Neutrino. Peter Doe, University of Washington NeSS 2002, Washington DC, 19 - 21 September, 2002. 100 Mo.

zizi
Télécharger la présentation

MOON ... M olybdenum O bservatory O f N eutrinos

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. MOON...Molybdenum Observatory Of Neutrinos H. Ejiri et al. PRL 85 (2000) 2917 Physics Goals: • Low Energy Solar Neutrino Spectroscopy • Search for 0 in 100Mo • Supernova Neutrino Peter Doe, University of Washington NeSS 2002, Washington DC, 19 - 21 September, 2002

  2. 100Mo Why Low Energy Solar Neutrinos?

  3. Why 100Mo? • Eth = 0.168 MeV • pp + 7Be Solar Neutrino spectroscopy in real-time • Large CC rates • Raw rates/ton100Mo/year = 40 7Be, 120 pp • Signal = Two  coincidence • Suppress backgrounds • Directly determine neutrino absorption cross section - Garcia et al. Solar- capture rates (SNU) A; Bahcall 88, b; Bhattacharya, c; Ejiri 98, d; Ejiri 99

  4. Solar Neutrino Signal: • Inverse beta decay: E= 0.115 MeV • Followed by: • Beta decay 100Tc: E= 0.63.2 MeV, =16s Detector Requirements: • Mass 100Mo 1 ton • Purity mBq/ton for U, Th isotopes • Time resolution 2  Coincidence • T~1  30s (solar & Supernova ), 2ns ( ) • Spatial Resolution • V~10-9 ~3mm (solar & Supernova ) • Energy resolution • E~0.12/E 1/2 Mev (~7% at 3 MeV) • Dynamic range • E ~0.1  40 MeV (solar & Supernova )

  5. Detection Techniques under Consideration: • Scintillator Mo Foil Sandwich • Mo loaded liquid scintillator • Cryogenic calorimeter One possible configuration scintillator Readout fibers • 1 module: • Mo foil, 6m x 6m x 0.05 gm/cm • Scintillator 6m x 6m x 0.25cm • 222 wavelength shifting fibers • Super module (detector) • 1950 Modules • 6m x 6m x 5m • 34 t nMo (3 t 100Mo) • 13600, 16-anode PMT readout • Rate pp - 7Be ~ 0.3 - 0.1 /ton/day Mo foil

  6. Ongoing R&D: • Mo Loaded Liquid Scintillator • 0.3 -0.7% Mo by weight • ~3.5 103 photons/MeV • Avalanche Photo diode readout • High quantum efficiency • Wavelength shifting fiber readout E~2E-1/2~11% at 3MeV X~0.8 E-1/2~0.5cm Need to increase photon yield by 2.5 Anticipate ~2 year R&D, then freeze detector design

  7. Laboratory Requirements: • Depth > 4000 mwe • Radon < 10 Bq/m3 (10 mBq/m3 in detector) • Cavity ~ 10m, 10m, 20m (includes staging area) • + counting and control room The MOON Collaboration: • H.Ejiri, N. Kudomi,s. Yoshida • RCNP, Osaka Univ. Japan • R. Hazama, K. Nomahci, K. Matsuoka, Y. Sugaya • Phys. Dept. Osaka Univ. Japan • P.J. Doe, V. Gehman, R.G.H. Robertson, J.F. Wilkerson, D. Will • CENPA, Univ. Washington Seattle, USA • J. Engel • Phys. And Astronomy, Univ. North Carolina, USA • P. Krastev, • IAS, Princeton, USA • M. Finger • Phys. Dept., Charles Univ., Prague, Czech Republic • A. Gorin, I.Manouilov, A. Rjazantsev • Inst. High Energy Physics, Protvino, Russia In Association with: The Majorana Collaboration F. Avignone, C. Aalseth S.R. Elliott, H. Miley…...

More Related