water purification n.
Skip this Video
Loading SlideShow in 5 Seconds..
Water Purification PowerPoint Presentation
Download Presentation
Water Purification

Water Purification

299 Vues Download Presentation
Télécharger la présentation

Water Purification

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Water Purification William Petterson & Wyatt McClure

  2. Introduction Bio gas and water purification Significant in disasters Significant in third world countries Energy efficient Burns clean

  3. Introduction Inexpensive and portable Provides more water to a growing population Reduces disease prominence Decreases the number of deaths due to dehydration

  4. Significance People need access to clean water in the world that is safe for drinking. About one out of five people in third world countries have access to clean water. Water born diseases account for 10,000 to 15,000 deaths per year.

  5. Significance Prevention of waterborne diseases like diarrheal infections such as cholera and other diseases like arsenic poisoning.

  6. Review of Literature:Distillation To distill water you heat the solution to the temperature at which water boils. When the water boils any pollutants in the water separates from the vapor. The condensing water that is collected in the separate vat is then pure and ready to drink. Dialysis fluid purity “Water purification” (July 2002)

  7. Review of Literature:Filtration Rids the water of particulates and some organisms. Forces water through a porous material that varies in size. The smaller pores capture smaller particles or organisms. Filter commonly found on or in taps. The porous material must be replaced regularly. Dialysis fluid purity “Water purification” (July 2002)

  8. Review of Literature:Bio Gas Generated from decaying organic material. Bacteria produce hydrocarbons (natural gas) when separated from oxygen. Produces 600 BTU of energy per cubic foot. Habmigern 2003

  9. Review of Literature:Methane • Tetrahedral structure • CH4 • 75% of natural gas and 55-60% of biogas • Odorless, colorless, and non-toxic • Explosive when in 5-15% concentration • Commonly found in reservoirs underground • Animals produce 15% of the worlds methane • Shahashiri 2008

  10. Hypothesis It was hypothesized that the pH of the clean water will be closer to 7 than the dirty water, that the ratio of dirty water to clean water will be about 8:7, that the contents of the clean water will contain close to 0ppm of chemicals and pollutants, and that it will take 1.5 hours of burning biogas to distill 2 gallons of dirty water completely. Process of distillation purifies in this way as an industrialized design using more accessible materials on smaller scale. How hot methane- most of biogas, burns: 333˚C; compared to boiling point of water: 100˚C

  11. Procedure The blueprints for the assembly. Assembly We set up the wooden stand with the burner on it using duct tape. We drilled 1” diameter holes in the tops of cooler and 6 gallon bucket. We attached the PVC piping to each of the holes and set the 6 gallon bucket on top of the burner stand

  12. Procedure The blueprints for the assembly. • We connected the tubing from the biogas to the burner. • There was not enough biogas, so we augmented it with propane.

  13. Procedure Testing We put two gallons of water per test in the dirty water bucket from the tap. To dirty it we added 4 cups of either Drano OR lemon juice as well as 1 cup of dirt. We then tested the pH, nitrate content, phosphate content and alkalinity of the dirty water and recorded the results. We turned on the burner after the purifier is set up. We set a timer and let the water completely boil off.

  14. Procedure We had to check frequently to tell when the water was all gone, and recorded the amount of time when the water had completely boiled off. We tested the pH, nitrate content, phosphate content and alkalinity of the clean water as well as the amount of soil content and recorded them.

  15. Results • The design was flawed • Materials were not durable • Water tight sealants were not heat resistant • The sealants melted and became compromised

  16. Results Device produced some clean water Design proved capable (industrialized design) Proved to be efficient with the flame based fuel Materials were cost effective including building

  17. Discussion • Over all the design was solid, but not the materials • Make sure fuel supply is sufficient enough for use • Replace PVC with copper piping • Replace caulking with solder • DO NOT USE DUCT TAPE.

  18. Discussion Research can not be considered a failure Proved that easily accessible materials could work Proved that the design of the purifier was economical Provided information on what materials are suited for the necessary conditions

  19. Conclusion Experiment was designed to test efficiency of a water distiller fueled by biogas. Results inconclusive, as almost no data was collected because the trials were aborted based on material failure and danger. The idea would help many when put with a biogas digester, as it would provide clean, pure water. Unfortunately the purifier was not made of strong enough materials to hold up to the heat produced from the burner.

  20. Conclusion It is concluded that stronger materials should be used to create the purifier. The cost would go up, however, decreasing the ease of installing it. A water distiller powered by combustion of hydrocarbons is not a practical way to produce pure water.

  21. Acknowledgements Nicholas True, Mentor Noble Energy, The Adolph Coors Foundation; sponsors The FSI staff and program UNC, hosts of the FSI program UNC’s geosciences laboratory for lending us some propane All sponsors of the FSI program Parents, for encouraging us to go here

  22. Reference Schultz, C. C. (2004). Water purification. PM Engineer, 10(11), 47-47-48,51,62. Retrieved from   Biogas production. (n.d.). Retrieved June 22, 2011, from Shakhashiri, B, & Schreiner, R. (2008). Methane. Access science. Retrieved June 21, 2011, from Zhao, K, Cui, D, Xu, T, Zhou, Q, & Hui, S. (2008). Effects of hydrogen addition on methane combustion. Fuel processing Technology, 89(11), Retrieved from Sampathkumar, K, Arjunan, T, Pitchandi, P, & Senthilkumar, P. (2010). Active solar distillation- a detailed review. Renewable and Sustainable Energy Reviews, 14(6), Retrieved from anthony, J. (2007). Drinking water for the third world. Journal of the American Planning Association, 73(2), Retrieved from Plate, D, Strassman, B, & Wilson, M. (2004). Water sources are associated with childhood diarrhoea. Tropical Medicine and International Health, 9(3), Retrieved from Appendix: Water purification methods. (2002, July). Dialysis fluid purity, 17(doi: 10.1093/ndt/17.suppl_7.54 ), 54-61.