1 / 75

Homogeneous Catalysis – A Personal View Matthias Beller

Homogeneous Catalysis – A Personal View Matthias Beller. Homogeneous Catalysis A Personal View 1. Introduction. Life Relies on Chemical Reactions. What does these processes have in common ?. Energy. Energy.  H 1 #. H 3 #. H 2 #.  H R. Starting material.  H R.

zona
Télécharger la présentation

Homogeneous Catalysis – A Personal View Matthias Beller

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Homogeneous Catalysis – A Personal ViewMatthias Beller

  2. Homogeneous Catalysis A Personal View1. Introduction

  3. Life Relies on Chemical Reactions What does these processes have in common ?

  4. Energy Energy H1# H3# H2# HR Starting material HR Starting material Product Product Economically and ecologically improved processes Improved raw material and energy usage. Minimization of waste Higher selectivities and higher activities Catalysis - Important for our Society Value of products made via catalysis > 2.5 x 106 Mio US$.

  5. Worldwide Merchant Catalyst Markets Chemical Chemical 1997 2003 2.0 2.2 Polymer Polymer 2.3 1.7 2.1 2.3 Refinery Refinery 2.1* 1.6* Environmental Environmental Billion US$ 7.4 9.0 * toll manufacturing fees only The Catalyst Group: The Intelligence Report: Global Shifts in the Catalyst Industry

  6. Fine chemicals Health Basic chemicals Homogeneous catalysis Molecular biology Bio- catalysis Photo- catalysis New materials Catalysis Heterogeneous catalysis Electro- catalysis Food Environmental technologies Energy Catalysis - Research for the 21th Century

  7. Catalysis research at the IfOK • First Institute for Catalysis Research in Europe; founded 1952. • 2003: ca. 90 Employees (18 permanent scientists, >20 postdocs, 13 Ph.D. students). • Background and main expertise is homogeneous catalysis, based on transition metal complexes • Transfer of excellent basic research to industrial applications Branch office in Warnemünde

  8. Homogenous versus Heterogenous Catalysis Mono phase Biphase/multiple phase variable Activity (of metal content) high variable selectivity high Conditions of reaction harsh mild Life-time of catalyst long variable high Sensitivity of deactivation low Problems due to diffusion difficult to solve none Recycling of catalyst usually difficult can easily be done easily changed no variation possible Steric and electronic properties realistic models do exist not obvious Mechanism

  9. Homogenous Catalysis A Personal View2. Biphasic Catalysis and Hydroformylation

  10. Two-Phase Catalysis A B A 2 1 B K K K A B Example: Shell Higher Olefin Process (SHOP, 1968) C2H4 C4-10 C4-20--n Olefins Cat. + Solv. Oligomerisation Cat. Ni(COD)2+2P-CH2CO2H Solv. 1,4-butanediol Work-up (Distillation) C2H4 C12-18 C20+ W. Keim et al. DE-P2054009 (1969) SHELL Metathesis (Re/ Al2O3) Isomerisation (Mo/ Al2O3) W. Keim, Chem. Ing. Techn. 56 (1984) 850 C10-14

  11. The Kuraray Nonanediol Process I I P d / T P P M S + + H O 2 O H S ul f ol a ne / H O 4 2 C C C Hydrodimerization 4 4 8 Isomerization C uC r O 3 I R h / T P P M S N i < M o> H O O H O + C O / H + H 2 2 1 , 9 - N ona ne di ol C Hydroformylation Hydrogenation 8 N. Yoshimura et al., US-Pat. 4808756 (1989)

  12. Telomerization: New Catalysts Catalyst performance: S/C = 1.000.000 : 1 TON > 900.000 TOF > 80.000 h-1 R. Jackstell, M. Gomez, A. Frisch, H. Klein, A. Zapf, O. Briel, R. Karch, D. Röttger, M. Beller, Angew. Chem. Int. Ed. 2002, 41, 986-989.

  13. Hydroformylation: General Aspects  Reaction discovered 1938 by Otto Roelen  Catalyst metals: first Cobalt, later Rhodium  In case of aliphatic olefins: linear aldehydes are preferred products  One of the most important homogeneous catalytic reactions (> 7 Mio. to/a)  Most important product: butyraldehyde (> 4 Mio to/a)

  14. Rh-catalyzed Hydroformylation In general two classes of ligands:  Phosphines (P-C-bond)  Phosphites (P-O-bond)  most important processes for propene hydroformylation: UCC: PPh3 / Rh: 400 : 1, T: 85 - 90 °C, p: 15 - 18 bar, n / i: 90 % Ruhrchemie/Rhone Poulenc: TPPTS / Rh = >100 : 1, T = 120 °C, p < 20 bar  actual catalyst: HRh(PR3)3CO  studied first by Wilkinson et al. in 1968

  15. Hydroformylation - The Multiphase Approach Gas phase Gas phase Gas phase Hydrocarbon Hydrocarbon Hydrocarbon phase phase phase Fluorous phase Aqueous phase HRh(CO)[PPh3]3 HRh(CO)(P[CH2)2(CF2)5CF3]3)3 HRh(CO)[P(C6H4SO3Na)3]3

  16. The RCH/RP hydroformylation - A green process Co high pressure process RCH/RP process Selectivities towards C4 products (%) towards C4 aldehydes (%) Products other than n-butanal (%) n-/i-ratio Manufacturing costs Capital expenditure costs Waste water volume Energy consumption figures Steam Power Syngas compression Reaction conditions Pressure (bar) Temperature (°C) E factor 93 86 31 80:20 140 >1.9 70 82 >2 1.7 300 150 0.6-0.9 >99 99 <5 93-97:7-3 100 1 1 -6.5 1 1 <50 120 0.04-<0.1

  17. Reactivity: Hydroformylation of Internal Olefins Why internal olefins? Interesting feedstock: Butenes (raffinat-II) Amount of aldehydes produced by hydroformylation

  18. Raising the Barr for the Perfect Reaction A. Seayad, M. Ahmed, H. Klein, R. Jackstell, T. Gross, M. Beller, Science, 2002, 297, 1676-1678.

  19. Composition of C4-Fractions steamcracker low severity steamcracker high severity alkynes alkynes 26 47 2 2 2 1 7 4 3 7 32 22 5 6 14 20 37 catcracker (FCC) gasoil, zeolite 13 0,5 15 11 12 12

  20. Hydroformylation of internal olefins  fast isomerisation necessary  no hydroformylation of internal double bonds  fast and selective reaction of the terminal olefin „The selective formation of linear aldehydes starting from internal alkenes is still one of the greater challenges in hydroformylation chemistry.“ P. W. N. M. van Leeuwen et al., In Rhodium Catalyzed Hydroformylation, P. W. N. M. van Leeuwen, C. Claver, Eds., Kluwer, Dordrecht, 2000, p.57.

  21. Ligands for Rh-catalyzed hydroformylation • 1995 published by van Leeuwen et al. • broad variation of the Bite angel • 1999 hydroformylierung of internal olefins: • 2-Octene: n / i: 90 : 10, TOF: 112 h-1 • (bridged aryl-substituents), (2 bar, 120 °C) • used for the hydroformylation of 2-butene • different steric bulk at the P-atoms seems advantageous • van Leeuwen: steric bulk in the ortho position of the bridge is necessary

  22. Hydroformylation with NAPHOS Conditions: t: 16 h, Rh / olefin: 0,01 mol %, P / Rh: 10  1977 published by Tamao et al.; later on patented by Eastman Kodak and Hoechst.  very good n/i-selectivity at low pressure, however activity is too low.  increase of activity possible by substituted Phenyl groups?

  23. New synthetis of substituted NAPHOS-ligands Yield (A...D): 44 %

  24. Influence of the Ligand Concentration IPHOS  unusual increase of activity Conditions: 2-Pentene, t: 16 h, Rh / olefin: 0,01 mol %, p: 10 bar, T: 120 °C TOF (20% conversion) = > 800 h-1 H. Klein, R. Jackstell, D. Röttger, K.-D. Wiese, M. Beller, Angew. Chem. Int. Ed. 2001, 40, 3408.

  25. Homogenous Catalysis A Personal View3. Challenges

  26. Ten Challenges for Industrial Catalysis Phenol from benzene and oxygen Direct synthesis of aromatic amines from ammonia Selective oxidation of methane to methanol Oxidative coupling from methanol to ethylene Anti-Markovnikov addition of alcohols and amines to olefins Low-temperature oxidation of SO2 to SO3 High-conversion and selective production of olefins from alkanes Facile decomposition of NOX Low-temperature epoxidation of ethylene Direct H2O2-synthesis from H2 and O2 Chem. Eng. News 1993, May 31, 23.

  27. The Markovnikov Rule "When a hydrocarbon of unsymmetrical structure combines with a halogen hydracid the halogen adds itself to the less hydrogenated carbon atom, i.e. to the carbon which is more under the influence of other carbon atoms." (V. Markovnikov, Comptes rendus 1875, 82, 668.) X H H X H X + R R R Markovnikov product anti-Markovnikov product Detours for anti-Markovnikov products: radical reactions hydroboration indirect paths (hydroformylation, telomerisation)

  28. Advantages Hydroaminomethylation of olefins First hydroamino- methylation: W. Reppe, DBP 839800, 1943; W. Reppe, Experientia, 1949, 5, 93. • available starting materials (olefins, ammonia, CO, hydrogen) • industrially important products • anti-Markovnikov addition preferred • selectivity for prim. amines and linear products (n/iso) • catalyst recovery • catalyst activity Problems

  29. Dual catalyst system: Rh / Ir / phosphine + active catalyst for hydroformylation high n/iso-selektivity with excess phosphine not active for hydrogenation with excess phosphine + _ + active for hydrogenation with excess phosphine selective for hydrogenation of imines + A New Concept for Hydroaminomethylations Rh: Ir: Use of two-phase catalysis • increase of selectivity via extraction of prim. amines • simple catalyst recycling • use of water solutions of ammonia B. Zimmermann, J. Herwig, M. Beller, Angew. Chem. Int. Ed. Engl. 1999, 38, 2372.

  30. Rh/Ir-cat. Variation of Olefins and Ligands NH 2 + CO + 2 H2 + NH3 + NH 2 T=130°C, p(start)=78bar (pentene/butene) or 60bar (propen/ethen), CO:H2=1:5, t=10h 0.026 mol-% Rh, 0.21 mol-% Ir, TPPTS: P/Rh=425, P/Ir=52, BINAS: P/Rh=140, P/Ir=18. Yield of amine: 80 - 90 %

  31. Linear Amines from Internal Olefins A. Seayad, M. Ahmed, H. Klein, R. Jackstell, T. Gross, M. Beller Science 2002, 297, 1676-1678.

  32. R C H N H 2 2 u n d e s i r e d R u n d e s i r e d C H N H 2 2 C H O R + R C H O C H O R C H O R + C H N H 2 2 R C H N H 2 2 R d e s i r e d u n d e s i r e d Hydroaminomethylation of internal olefins R R 4 - 5 %  fast isomerisation necessary  no hydroformylation of internal double bonds  fast and selective reaction of the terminal olefin

  33. Homogenous Catalysis A Personal View4. Fine Chemicals

  34. Most organic syntheses are fare away from being efficient. New methods need to be developed and known methods must be improved. The „Ideal“ Chemical Synthesis Environment Produce a minimum of waste; use available feedstocks Apply energy-efficient processes with 100% atom economy; use domino processes and mcr´s Efficiency Highly selective (chemo-, regio-, stereoselective) processes (100% yield) Selectivity Perform reactions in standard equipment; minimize catalyst costs (“real catalytic processes); look for high space/time yields Economics

  35. Environmental Acceptability: the E Factor kg waste product E = kg desired product Product volume (t/a) Ratio kg by-products per kg product Industry oil refining bulk chemicals fine chemicals pharmaceuticals 0.1 <1-5 5-50 25-100+ 106-108 104-106 102-104 101-103 R. A. Sheldon, ChemTech 1994, 24, 38.

  36. Classic Process for Ibuprofen „Boots“ process (CH3OC)2O / AlCl3 ClCH2CO2C2H5 / NaOC2H5 H+ / H2O H2NOH H+ / H2O Ibuprofen

  37. New Process for Ibuprofen „Hoechst“ process „Boots“ process (CH3OC)2O / AlCl3 (CH3OC)2O / HF ClCH2CO2C2H5 / NaOC2H5 H2 / Kat. H+ / H2O H2NOH CO / Pd H+ / H2O Ibuprofen

  38. Dimetinden (antihistamines) Indoramin (hypotensor) Fentanyl (analgesic) Tromaril (antiphlogistic) Improved Synthesis of Pharmaceuticals 52-67% 90-99% M. Beller, C. Breindl, Tetrahedron, 1998, 54, 6359.

  39. Angew. Chem. 2000, 112, 4315-4317; Chem. Commun. 2000, 2475-2476. Adv. Synth. Catal. 2001, submitted. Tetrahedron Lett. 2001, 6707-6710. Chem. E. J. 2001, 7, 2908-2915; Synlett 2000, 1589-1592. Angew. Chem. 2001, 113, 2940-2943; Synthesis 2001, 1098-1109. J. Mol. Cat. 2002 in press. Aryl-X Activation Cl R Ph-OTf 660,- Euro Ph-I 30,- Euro Ph-Br 2,0 Euro Ph-Cl 0,57 Euro 1,0 mol% Pd 240,- Euro 0,1 mol% Pd 24,- Euro0,005 mol% Pd 1,2 Euro Raw material costs for 1 kg benzoic acid:

  40. Heck reactions Prosulfuron First commercial Heck reaction developed by Ciba-Geigy in mid 80´s (> 100 to/a). Naproxen New process by Albermarle M. Beller, A. Zapf, Top. Cat. 2001 in press.

  41. R PdX PdL PdL 2 4 3 Mechanism for Heck Reactions L sp2-C-X bond dissociation energies at 298 K: L A r P d X L L A r P d X C-F 527 kJ/mol C-Cl 402 kJ/mol C-Br 339 kJ/mol C-I 272 kJ/mol ArX R + 2 L + L + L PdL 2 Red. - L - L L HB X requirements for active catalysts: - coordinatively unsaturated Pd species - highly nucleophilic L B H P d X L X L A r P d L R R use of bulky and electron rich ligands A r

  42. 50°C, 1 bar, H2O, pH 9.5 Celanese Corp., GB-B 1028940, 1966. 70°C, 1 bar, H2O / dioxane, pH 8 Exxon Corp., US-A 4496779, 1984. 100°C, 28 bar, H2O / MeCN Knowledge 2% Understanding is getting familiar with facts and thoughts. 3-5% J. F. Cairns, H. L. Roberts, J. Chem. Soc.C 1968, 640-642.

  43. C F 3 C F 3 P d( P C y ) + 3 2 C y P P d P C y 3 3 C l C l C y P P d P C y 3 3 C l C l P d( P C y ) 3 2 Oxidative Addition of Aryl Chlorides to Pd(PCy3)2 30 °C 50 °C 125 min PdL2 75 min 45 min 25 min 5 min 22.0 ppm ppm 40 30 20 39.5 ppm PdL2 65 min 45 min 25 min 5 min + ppm 40 30 20 39.5 ppm 22.5 ppm

  44. Suzuki reactions Losartan Losartan process by MSD OTBN Hoechst (Clariant) process for ATII-antagonists

  45. BuPAd2 - Variation of Substrates 0 . 0 0 5 m o l % P d ( O A c ) 2 R 0 . 0 1 m o l % B u P A d R 2 C l + B ( O H ) 2 t o l u e n e , K P O 3 4 1 0 0 ° C , 2 0 h a) 4 h BuPAd2 A. Zapf, A. Ehrentraut, M. Beller, Angew. Chem. 2000, 112, 4315.

  46. Cross Coupling of Grignard Reagents 1.5 mol% Pd2(dba)3 4 mol % L·HCl Entry L Solvent Temp. [°C] Time [h] Yield [%] 1 35 IMes Et2O / THF 45 20 2 97 IPr Et2O/ THF 45 20 3 10 IPr Toluene / THF 80 20 4 86 IPr THF 80 5 5 none Dioxane / THF 0 80 3 6 IMes Dioxane / THF 41 80 3 L = IPr 7 IPr Dioxane / THF 99 80 3 Lit.: Huang, J.; Nolan, S. P. J. Am. Chem. Soc. 1999, 121, 9889-9890.

  47. Pd-catalyzed (Jägers, Knoll 1989, Beller et al. since 1995) CO (10 - 60 bar) [Pd] (0.01 - 0.5 mol%) + - H(1 mol%) X(5 - 35 mol%) Amidocarbonylation Reactions Wakamatsu reaction (Co-catalyzed) CO / H2 (50 - 100 bar) HCo(CO)4 (1 - 5 mol%) N-Acyl Amino Acid One-pot Synthesis of N-Acyl Amino Acids with 100 % Atom Utilization High Selectivity and Chemical Yield Tolerance of various functional groups M. Beller, M. Eckert, Angew. Chem. 2000, 112, 1027; Angew. Chem. Int. Ed. 2000, 39, 1010.

  48. Mechanism

  49. N-Acylamino Acids: Fine Chemicals and Pharmaceuticals O S H O N-Acetyl-cysteine Sarcosinates R N C O O H N C O O H C H H 3 R C O H H 2 H O O C N Aspartame Methotrexate H N C O N C O C H H O C O 2 2 3 2 H O R O O S H O O O H Captoprile Vancomycine N N N N C O O H H H O O

More Related