1 / 30

Propagation Matrix Method applied on quantum well

calculation of transmission coefficient and eigenstates of double quantum well structure

Arpan3
Télécharger la présentation

Propagation Matrix Method applied on quantum well

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Course: Quantum Electronics Arpan Deyasi Quantum Transmission Coefficient using PMM Electronics Calculation of Arpan Deyasi Arpan Deyasi, RCCIIT 14/10/2020 1

  2. Graphical representation of Transmission Coefficient Arpan Deyasi T(E) Quantum Electronics E E1 E2 E3 E0 14/10/2020 Arpan Deyasi, RCCIIT 2

  3. Drawbacks of Transfer Matrix Technique Arpan Deyasi Step potential well: Ideal case Quantum Real quantum well can’t have step potential profile, in fact, different complex potential profiles are considered for application purpose Electronics 14/10/2020 Arpan Deyasi, RCCIIT 3

  4. Solution Arpan Deyasi We have to consider a mathematical technique where variation of potential at each point of both barrier and well layers can be incorporated Quantum Electronics V = V0 V = 0 14/10/2020 Arpan Deyasi, RCCIIT 4

  5. Change required in Mathematical Formulation Arpan Deyasi  = Quantum * − 2 ( )( z E V ) m * 2 ( ) z E m  = 0 b w 1 2 2 2 Electronics for well for barrier 14/10/2020 Arpan Deyasi, RCCIIT 5

  6. Change required in Mathematical Formulation We have to make a generalized wave-vector for both barrier and well Arpan Deyasi Quantum Electronics Why? Then we will be able to incorporate simultaneous variation of barrier and well potentials 14/10/2020 Arpan Deyasi, RCCIIT 6

  7. Generalized wave-vector Arpan Deyasi * − 2 ( )( z E V ) m Quantum j j  = j 2 calculated at jthpoint Electronics 14/10/2020 Arpan Deyasi, RCCIIT 7

  8. DQWTB structure Arpan Deyasi Quantum Electronics j j+1 Z 14/10/2020 Arpan Deyasi, RCCIIT 8

  9. Generalized wave equations Arpan Deyasi  =  + −  exp( ) exp( ) A i z B i z Quantum j j j j j = Electronics   + −  exp( ) exp( ) C i z D i z + + + + + 1 1 1 1 1 j j j j j 14/10/2020 Arpan Deyasi, RCCIIT 9

  10. Generalized boundary conditions Arpan Deyasi  =  Quantum j+ 1 j Electronics   d d + 1 j j = dz dz 14/10/2020 Arpan Deyasi, RCCIIT 10

  11. At interface Arpan Deyasi  =  Quantum j+ 1 j  + −  exp( ) exp( + ) A = i z  B i z Electronics j C j j j −  exp( ) exp( ) i z D i z + + + + 1 1 1 1 j j j j 14/10/2020 Arpan Deyasi, RCCIIT 11

  12. At interface Arpan Deyasi  =  ' ' j+ 1 j  Quantum  −  −  exp( ) exp(  − ) i = Electronics A i z i B i z j j j j z j j   −  exp( ) exp( ) i C i i D i z + + + + + + 1 1 1 1 1 1 j j j j j j  =  −  −  exp( ) exp(  − ) A i z B i z j j j j j j   −  exp( ) exp( ) C i z D i z + + + + + + 1 1 1 1 1 1 j j j j j j 14/10/2020 Arpan Deyasi, RCCIIT 12

  13. At interface Arpan Deyasi Quantum  − −  exp( ) exp( ) A i z B i z j        j j j           + 1 j =  exp( ) C i z Electronics + + 1 1 j j j   + 1 j − −  exp( ) D i z + + 1 1 j j j 14/10/2020 Arpan Deyasi, RCCIIT 13

  14. At interface  + −  exp( ) exp( + ) A = Arpan Deyasi i z  B i z j C j j j −  exp( ) exp( ) i z D i z + + + + 1 1 1 1 j j j j Quantum  − −  exp( ) exp( ) A i z B i z j     j j j                 + Electronics + 1 1 j j =  − −  exp( ) exp( ) C i z D i z + + + + 1 1 1 1 j j j j j j         1 1            A B C D       1 1 1 − In matrix notation + 1       j j = + + 1 1 j j − 1 + 1 j j j j 14/10/2020 Arpan Deyasi, RCCIIT 14

  15. At interface Arpan Deyasi         1 1            A B C D       1 1 1 − + 1       j j = Quantum + + 1 1 j j − 1 + 1 j j j j Electronics       1 1 − 1             A B C D         1 1 1 − + 1       j j = + + 1 1 j j − 1 + 1 j j j j 14/10/2020 Arpan Deyasi, RCCIIT 15

  16. At interface Arpan Deyasi       1 1    Quantum          A B C D       1 1 1 − 1 2 + 1       j j = + + 1 1 j j − 1 + 1 j j j j Electronics                                                     + + 1 1 j j + − 1 1             A B C D 1 2 j j + 1 j j =     + 1 j j + + 1 1 j j − + 1 1 j j 14/10/2020 Arpan Deyasi, RCCIIT 16

  17. Arpan Deyasi At interface                                                     + + Quantum 1 1 j j + − 1 1 1 2 j j = P Let j     Electronics + + 1 1 j j − + 1 1 j j Pj: junction matrix 14/10/2020 Arpan Deyasi, RCCIIT 17

  18. DQWTB structure Arpan Deyasi Quantum Electronics Lj j j+1 Z 14/10/2020 Arpan Deyasi, RCCIIT 18

  19. Significance of Lj Arpan Deyasi travelling from ‘j’ to ‘j+1’ with a distance ‘Lj’ matches the positive coefficients as well as negative coefficients Quantum Electronics 14/10/2020 Arpan Deyasi, RCCIIT 19

  20. For Lj Arpan Deyasi  = exp( ) A i L C + 1 j j j j Quantum −  = exp( ) B i L D + 1 j j j j Electronics                 exp( ) 0 i i L A B C D + 1 j j j j In matrix notation =  −  0 exp( ) L + 1 j j j j 14/10/2020 Arpan Deyasi, RCCIIT 20

  21. For Lj Arpan Deyasi −     Quantum             exp( ) 0 i  A B i L C D + 1 j j j j =  0 exp( ) L + 1 j j j j Let Electronics −      exp( ) 0 i  i L j j = P L 0 exp( ) L  j j PL : step matrix 14/10/2020 Arpan Deyasi, RCCIIT 21

  22. Q: How to calculate propagation matrix? Arpan Deyasi It is the Cartesian product of Quantum Junction matrix with Step matrix Electronics 14/10/2020 Arpan Deyasi, RCCIIT 22

  23. Propagation Matrix calculation Arpan Deyasi         Electronics                                             + + 1 1 j j + − 1 1 Quantum 1 2 j j = P j     + + 1 1 j j − + 1 1 j j −      exp( ) 0 i  i L j j = P L 0 exp( ) L  j j 14/10/2020 Arpan Deyasi, RCCIIT 23

  24. Propagation Matrix calculation Arpan Deyasi                         −                                + + 1 1 j j + − 1 1 Quantum 1 2 j j = P     Electronics + + 1 1 j j − + 1 1 =  P P P j L j j   exp( ) 0 i  i L j j  0 exp( ) L  j j 14/10/2020 Arpan Deyasi, RCCIIT 24

  25. Propagation Matrix calculation Arpan Deyasi                               exp( Quantum + + 1 1 j j −  + −  − ) 1        exp( ) 1        i L i L j j j j 1 2 j j = P exp( Electronics             + + 1 1 j j  −  + ) 1 exp( ) 1 i L i L j j j j j j      P P P P 11 12 = P 21 22 14/10/2020 Arpan Deyasi, RCCIIT 25

  26. Propagation Matrix calculation Arpan Deyasi             A B C D + 1 j j = P Quantum + 1 j j Electronics             A B C D       P P P P + 1 j j 11 12 = + 1 j j 21 22 14/10/2020 Arpan Deyasi, RCCIIT 26

  27. Propagation Matrix calculation Arpan Deyasi             A B C D       P P P P + 1 j j 11 12 = Quantum + 1 j j 21 22 Electronics = + A P C P D + + 11 1 12 1 j j j = + B P C P D + + 21 1 22 1 j j j 14/10/2020 Arpan Deyasi, RCCIIT 27

  28. Arpan Deyasi Cj+1 Aj P11 P12 Quantum P21 P22 Electronics Dj+1 Bj P12is the transmission coefficient when the wave is traversing from port 2 to port 1 and port 1 is terminated by matched load 14/10/2020 Arpan Deyasi, RCCIIT 28

  29. P12 = 0 for practical device Arpan Deyasi = + A P C P D + + 11 1 12 1 j j j Quantum A j = P 11 C+ Electronics 1 j 2         C 1 ( ) + 1 j = = T E * A 11 11 P P j 14/10/2020 Arpan Deyasi, RCCIIT 29

  30. Graphical representation of Transmission Coefficient Arpan Deyasi T(E) Quantum Electronics E E1 E2 E3 E0 14/10/2020 Arpan Deyasi, RCCIIT 30

More Related